[ Identification | Description | Input parameters | Output parameters | Links ]
Mirror_parabolic
ComponentTakes a reflectivity (default=1) as input and reflects rays in a ideal geometry parabolic mirror. The mirror is positioned in the zx-plane curving towards positive y. I.e. the focal point is (0,0,f(a,b)) The geometry of the paraboloid is governed by the equation: y = x^2 / a^2 + z^2 / b^2 Hence, the focal length for the 'x' curve is f=a^2 / 4, and analogous for z.
Name | Unit | Description | Default |
R | 1 | Reflectivity of mirror. | 1 |
a | sqrt(m) | Transverse curvature scale, if zero - the mirror is flat along x. | 1 |
b | sqrt(m) | Longitudinal curvature scale, if zero, flat along z. | 1 |
xwidth | m | Width of mirror. | 0.1 |
zdepth | m | Length of mirror. | 0.1 |
yheight | m | Thickness of mirror. If 0 (the default) the mirror is mathemticlly thin. Only has an effect for hitting the mirror from the side. | 0 |
Name | Unit | Description | Default |
a2inv | m^-2 | Inverse of a^2. | |
b2inv | m^-2 | Inverse of b^2. | |
xmax | m | Mirrors' extent along x. | |
zmax | m | Mirrors' extent along z. | |
focusx | m | Focal length wrt x = f(a). | |
focusz | m | Focal length wrt z = f(b). |
Mirror_parabolic.comp
.
[ Identification | Description | Input parameters | Output parameters | Links ]
Generated on 2021-08-13 08:57:53