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Preface and acknowledgements

This document contains information on the Monte Carlo x-ray tracing program McX-
trace version 1.2, building on the initial release in October 1998 of the neutron ray tracing
program McStas version 1.0 as presented in Ref. [LN99]. The reader of this document
is expected to have some knowledge of x-ray and/or neutron scattering, whereas only
little knowledge about simulation techniques is required. In a few places, we also assume
familiarity with the use of the C programming language and UNIX/Linux.

Support has been kindly given by SAXLAB Aps. through its CEO Karsten Joensen
as well the ESRF and MAX IV Laboratory. We acknowledge all contributing parties.

In case of errors, questions, or suggestions, please do not hesitate to contact the team
and the community by either writing to the user mailing list mcxtrace-users@mcxtrace.org,
consulting the McXtrace home page [Mcx], or leaving a note on the McXtrace facebook
page https://www.facebook.com/McXtrace. A special bug/request reporting service
is available [Mcz].

If you appreciate this software, please subscribe to the mcxtrace-users@mcxtrace.org
email list, send us a smiley message, and contribute to the package.

We encourage you to refer to this software when publishing result with the following
citation: E. B. Knudsen, et. al., Journal of Applied Crystallography, vol. 46, 2013.

Third party software included in the distribution McXtrace is:

• perl Math::Amoeba from John A.R. Williams J.A.R.Williams@aston.ac.uk.

• perl Tk::Codetext from Hans Jeuken haje@toneel.demon.nl.

• and optionally PGPLOT from Tim Pearson tjp@astro.caltech.edu.

The McXtrace project was initially supported by Det Strategiske Forskningsrd through
the NaBiIT programme. Partners in this joint venture were:

• Materials Research Division, Ris DTU, Roskilde, Denmark.

• Niels Bohr Institute, University of Copenhagen, Denmark.

• Faculty of Life Sciences, University of Copenhagen, Denmark.

• SAXLAB ApS. Lundtofte, Denmark.

• ESRF, Grenoble, France.
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1. Introduction to McXtrace

Efficient design and optimization of x-ray beamlines are formidable challenges. In many
cases Monte Carlo techniques are well matched to meet these challenges. McXtrace
is an effort to port the framework provided to the neutron scattering community by
the McStas package, to x-ray scattering. McStas has, since its inception in October ’98,
been used successfully at all major neutron scattering facilities in the world. A particular
power of McStas is its geometry engine, which has been adopted by McXtrace, with little
modification. The device library of McXtrace is not yet as complete as its sibling McStas
but is growing rapidly. At the time of writing it is complete enough to be able to perform
simulations approximating any standard beamline.

McXtrace is a fast and versatile software tool. It is based on a meta-language specially
designed for x-ray (and neutron) simulation. Specifications are written in this language
by users and automatically translated into efficient simulation codes in ANSI-C. The
present version supports both continuous and pulsed source beamlines, and includes a
library of standard components with total around 100 components.

The McXtrace package is written in ANSI-C and is freely available for download from
the McXtrace website [Mcx]. The package is actively developed and supported by Physics
Department, Technical University of Denmark, Kgs. Lyngby, Denmark., Niels Bohr
Institute, University of Copenhagen, Copenhagen, Denmark., European Synchrotron
Radiation Facility, Grenoble, France.and SAXSLAB Aps. The system is tested and is
supplied with examples and documentation. Besides this manual, a separate component
manual exists which details each individual component separately.

1.1. Development of Monte Carlo x-ray simulation

Monte Carlo simulation of x-ray instrumentation has been used for many years — in
particular the SHADOW package [WCC94; Rio+11] has found widespread use, and is
still actively developed, yet has some limitations. Ray [Sch08] and Xtrace[Bau+07] are
other packages using the same basic techniques.

What sets McXtrace apart is, among other things, its open source development strat-
egy and its inherent modularity. This combination lets independent scientists work
indepently on separate modules that they have use for, and contribute to the whole with
only a small effort.
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1.2. Scientific background

What makes scientists happy? Probably to collect good quality data, pushing beamlines
to their limits, and fit that data to physical models. Among available measurement
techniques, x-ray scattering provides a large variety of beamlines to probe structure and
dynamics of all kinds of samples.

Achieving a satisfactory experiment on the best beamline is not all. Once collected,
the data analysis process raises some questions concerning the signal: what is the back-
ground signal? What proportion of coherent and incoherent scattering has been mea-
sured? What are the contributions from the sample geometry, the container, the sample
environment, and generally the beamline itself? And last but not least, how does multi-
ple scattering affect the signal? Most of the time, the physicist will elude these questions
using rough approximations, or applying analytical corrections [Cop+86]. Monte-Carlo
techniques provide a mean to evaluate some of these quantities. The technicalities of
Monte-Carlo simulation techniques are explained in detail in chapter 4.

1.2.1. The goals of McXtrace

Initially, the McStas project and hence also the present subject the McXtrace project
had four main objectives that determined its design.

Correctness. It is essential to minimize the potential for bugs in computer simulations.
If a word processing program contains bugs, it will produce bad-looking output or may
even crash. This is a nuisance, but at least you know that something is wrong. However,
if a simulation contains bugs it produces wrong results, and unless the results are far off,
you may not know about it! Complex simulations involve hundreds or even thousands of
lines of formulae, making debugging a major issue. Thus the system should be designed
from the start to help minimize the potential for bugs to be introduced in the first place,
and provide good tools for testing to maximize the chances of finding existing bugs.

Flexibility. When you commit yourself to using a tool for an important project, you
need to know if the tool will satisfy not only your present, but also your future require-
ments. The tool must not have fundamental limitations that restrict its potential usage.
Thus the McXtrace systems needs to be flexible enough to simulate different kinds of
instruments as well as many different kind of optical components, and it must also be
extensible so that future, as yet unforeseen, needs can be satisfied.

Power. “Simple things should be simple; complex things should be possible”. New ideas
should be easy to try out, and the time from thought to action should be as short as
possible. If you are faced with the prospect of programming for two weeks before getting
any results on a new idea, you will most likely drop it. Ideally, if you have a good idea
at lunch time, the simulation should be running in the afternoon.
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Efficiency. Monte Carlo simulations are computationally intensive, hardware capacities
are finite (albeit impressive), and humans are impatient. Thus the system must assist in
producing simulations that run as fast as possible, without placing unreasonable burdens
on the user in order to achieve this.

1.3. The design of McXtrace

In order to meet these ambitious goals, it was decided that McXtrace should be based
on its own meta-language, specially designed for simulating scattering beamlines. Sim-
ulations are written in this meta-language by the user, and the McXtrace compiler
automatically translates them into efficient simulation programs written in ANSI-C.

In realizing the design of McXtrace, the task was separated into four conceptual layers:

1. Modeling the physical processes of scattering, i.e. the calculation of the fate of a
photon that passes through the individual components of the beamline (absorption,
scattering at a particular angle, etc.)

2. Modeling of the overall beamline geometry, mainly consisting of the type and
position of the individual components.

3. Accurate calculation, using Monte Carlo techniques, of beamline properties such
as resolution function from the result of ray-tracing of a large number of photons.
This includes estimating the accuracy of the calculation.

4. Presentation of the calculations, graphical or otherwise.

Though obviously interrelated, these four layers can be treated independently, and
this is reflected in the overall system architecture of McXtrace. The user will in many
situations be interested in knowing the details only in some of the layers. For example,
one user may merely look at some results prepared by others, without worrying about
the details of the calculation. Another user may simulate a new instrument without
having to reinvent the code for simulating the individual components in the instrument.
A third user may write an intricate simulation of a complex component, e.g. a detailed
description of a high resolution fast chopper, and expect other users to easily benefit
from his/her work, and so on. McXtrace attempts to make it possible to work at any
combination of layers in isolation by separating the layers as much as possible in the
design of the system and in the meta-language in which simulations are written.

The usage of a special meta-language and an automatic compiler has several advan-
tages over writing a big monolithic program or a set of library functions in C, Fortran,
or another general-purpose programming language. The meta-language is more pow-
erful ; specifications are much simpler to write and easier to read when the syntax of
the specification language reflects the problem domain. For example, the geometry of
beamlines would be much more complex if it were specified in C code with static arrays
and pointers. The compiler can also take care of the low-level details of interfacing the
various parts of the specification with the underlying C implementation language and
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each other. This way, users do not need to know about McXtrace internals to write new
component or beamline definitions, and even if those internals change in later versions
of McXtrace, existing definitions can be used without modification.

The McXtrace system also utilizes the meta-language to let the McXtrace compiler
generate as much code as possible automatically, letting the compiler handle some of
the things that would otherwise be the task of the user/programmer. Correctness is
improved by having a well-tested compiler generate code that would otherwise need
to be specially written and debugged by the user for every beamline or component.
Efficiency is also improved by letting the compiler optimize the generated code in ways
that would be time-consuming or difficult for humans to do. Furthermore, the compiler
can generate several different simulations from the same specification, for example to
optimize the simulations in different ways, to generate a simulation that graphically
displays x-ray trajectories, and possibly other things in the future that were not even
considered when the original instrument specification was written.

The design of McXtrace makes it well suited for doing “what if. . . ” types of sim-
ulations. Once an instrument has been defined, questions such as “what if a slit was
inserted”, “what if a focusing monochromator was used instead of a flat one”, “what if
the sample was offset 0.2 mm from the center of the axis” and so on are easy to answer.
Within minutes the beamline definition can be modified and a new simulation program
generated. It also makes it simple to debug new components. A test beamline definition
may be written containing a source, the component to be tested, and whatever monitors
are useful, and the component can be thoroughly tested before being used in a complex
simulation with many different components.

The McXtrace system is based on ANSI-C, making it both efficient and portable. The
meta-language allows the user to embed arbitrary C code in the specifications. Flexibility
is thus ensured since the full power of the C language is available if needed.

1.4. Overview

The McXtrace system documentation consists of the following major parts:

• A short list of new features introduced in this McXtrace release appears in chapter 2

• Chapter 3 explains how to obtain, compile and install the McXtrace compiler,
associated files and supportive software

• Chapter 4 concerns Monte Carlo techniques and simulation strategies in general

• Chapter 5 includes a brief introduction to the McXtrace system (section 5.1) on
running the compiler to produce simulations. section 5.2 explains how to run the
generated simulations. Running McXtrace on parallel computers requires special
attention and is discussed in section 5.5. A number of front-end programs are used
to run the simulations and to aid in the data collection and analysis of the results.
These user interfaces are described in section 5.3.
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• The McXtrace meta-language is described in chapter 6. This chapter also describes
a set of library functions and definitions that aid in the writing of simulations. See
appendix B for more details.

• The McXtrace component library contains a collection of well-tested, as well as
user contributed, beam components that can be used in simulations. The McXtrace
component library is documented in a separate manual and on the McXtrace web-
page [Mcx], but a short overview of these components is given in chapter 7 of the
Manual.

A list of library calls that may be used in component definitions appears in appendix B,
and an explanation of the McXtrace terminology can be found in appendix C of the
Manual. Plans for future extensions are as a rule presented on the McXtrace web-
page [Mcx].
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2. New features in McXtrace 1.2

McXtrace is an ongoing evolving project with features being added frequently. While we
strive to test it’s features thoroughly, bugs are inevitable. Bugs are generally reported
using the user-mailing list: mcxtrace-users@mcxtrace.org and subsequently (after initial
triage) tracked using the McXtrace Trac system [Mcc] (shared with its sister project
McStas). We will not present here an extensive list of improvements and corrections,
and we let the reader refer to this bug reporting service for details. Only important
changes are indicated here. Of course, we can not guarantee that the software is bullet
proof, but we do our best to correct bugs, when they are reported.

The main focus of the 1.2 release has been to improved stability and fixing bug, rather
than new developments.

2.1. Kernel

An important update has been made to the approach of negative propagation lengths.
Instead of inplicitly absorbing photons these are now generally restored. In many cases
the previous behaviour casued confusion and counter-inutitive operation, in particular
regarding mutually exclusive monitors with the flag restore xray set.

2.2. Run-time

New intersection routines include ellipsoid_intersect and sphere_intersect.

2.3. Components and Library

We here list the new and updated components (found in the McXtrace lib directory)
which are detailed in the Component manual. For an overview see the Component
Overview of the User Manual(This Document).

2.3.1. New components

Sources

We have revised the following source models to make them work as conherently as
possible while retaining the backwards compatibility.

Source pt Point source.

Source flat Flat surface uniform source
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Source div Flat surface uniform source with divergence distribution

Source gaussian Gaussian crossection source approximating a Bending Magnet

Furthermore we now also supply an experimental model of a bending magnet Bending magnet.
The following experimental components have been set up to facilitate interfacing with
SPECTRA, Simplex, and GENESIS 1.3. In general they take the output of the relevant
external program to get a phase space distribution of photons from which McXtrace
samples rays to trace.

Source genesis Reads the output of a GENESIS 1.3 simulation. Useful for FEL-simulations.

Source spectra Reads the output of a SPECTRA simulation. Useful for Synchrotron
simulations.

Source simplex Reads the output of a Simplex simulation. Useful for FEL simulations.

Samples

Single crystal Now has support for wavelength dependent absorption.

Molecule 2state Also includes absorption support.

Molecule 2state Option for supplying a q-parametrized scattering amplitude curve.
This is for instance useful to add the effect of a well known solvent (e.g. Wa-
ter) to a simulation.

SAXS A whole set of SAXS-related samples is now available for various cases.

Optics

Filter Now has the option of taking any shape (through an .off or .ply-file.

Filter Added a refraction-option.

Multilayer elliptic Elliptical multilayer mirror. This component now has the option of
using a analytical kinematical approximation to compute refleticity as opposed to
supplying a datafile. This is faster, but often less accurate.

Lens parab * The lenses now behave in a similar manner wrt. parameter naming etc.,
also fixes to an error in the absorption computation. Note that the lens version
will be merged in the next release (see the component manual).

Mirror elliptic Elliptical shape mirror. Major geometry bug-fixes. Is scheduled to be
merged with Mirror curved.

Mirror parabolic Parabolic shape mirror. Major geometry bug-fixes. Is scheduled to be
merged with Mirror curved.
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Mirror curved Cylindrical mirror. Fixed a bug which prevented its use as an azimuthal
focusing mirror, with sideways incidence.

Chopper simple Optional random jitter was added.

Mask A component that takes an image file as input, which is used to mask the beam.
For instance to exmine linited resolution effects.

Monitors

TOF monitor New Intensity vs. time of flight monitor. Useful for sime-resolved studies
with pulsed sources.

2.3.2. Example instruments

The following beamline models have been added (in addition to unit test models that
test specific components):

XFEL SPB A rough model of the SPB beamline at the Euorpean XFEL.

MAXII 711 A model of the 711 powder diffraction beamline at Maxlab in Lund, Sweden.

MAXII 811 Model of the 811 surface diffraction and EXAFS beamline at Maxlab in Lund,
Sweden.

2.4. Tools, installation

2.4.1. Selected Tool features

• standard FreeBSD port

• Possibility to run MPI or grid simulations by default from mxgui.

• We provide syntax-highlighting setup files for eamcs, vim and gedit editors.

2.4.2. Warnings

WARNING: The ’dash’ shell which is used as /bin/sh on some Linux system makes
the ’Cancel’ and ’Update’ buttons fail in mxgui. Solutions are:

a) If your system is a Debian or Ubuntu, please dpkg-reconfigure dash and say ’no’
to install dash as /bin/sh

b) If you run another Linux with /bin/sh beeing dash, please install bash and manu-
ally change the /bin/sh link to point at bash.
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3. Installing McXtrace

Up to date information on installation procedures on the various supported platforms are
available under the installation heading on the McXtrace project webpage: http://www.mcxtrace.org

3.0.1. Platform support

McXtrace is a multiplatform effort. The team policy is to supply native style installation
packages for:

Mac OS X The aim is to supply installation packages for the 3 latest releases.

Windows We make packages for system supported by Microsoft.

Linux .deb based distributions.

Linux .rpm based distributions.

FreeBSD Through the ports system.

Plus probably any UNIX/POSIX type environment with a bit of effort, using the source
distribution of McXtrace.

The team will be happy to make package builds for other types of systems on request.
Please write to the user mailing list mcxtrace-users@mcxtrace.org to request a special
build.
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4. Monte Carlo Techniques and simulation
strategy

This chapter explains the simulation strategy and the Monte Carlo techniques used in
McXtrace. We first explain the concept of the x-ray weight factor, and discuss the
statistical errors in dealing with sums of x-ray weights. Secondly, we give an expression
for how the weight factor transforms under a Monte Carlo choice and specialize this to the
concept of direction focusing. Finally, we present a way of generating random numbers
with arbitrary distributions. More details are available in the Appendix concerning
random numbers in the User manual.

4.1. X-ray simulations

X-ray scattering beamlines are built as a series of optical elements. Each of these el-
ements modifies the beam characteristics (e.g. divergence, wavelength spread, spatial
and temporal distributions) in a way which, for simple x-ray beam configurations, may
be modelled with analytical methods.

However, real x-ray beamlines consist of a large number of optical elements, and this
brings additional complexity by introducing strong correlations between x-ray beam
parameters like divergence and position - which is the basis of the acceptance diagram
method - but also wavelength and time. The usual analytical methods, such as phase-
space theory, then reach their limit of validity in the description of the resulting effects.

In order to cope with this difficulty, Monte Carlo (MC) methods (for a general review,
see Ref. [Jam80]) may be applied to the simulation of x-ray beamlines. The use of prob-
ability is commonplace in the description of microscopic physical processes. Integrating
these events (absorption, scattering, reflection, ...) over the x-ray trajectories results
in an estimation of measurable quantities characterizing the beamline. Moreover, using
variance reduction (importance sampling) where possible, reduces the computation time
and gives better accuracy.

Implementations of the MC method for X-ray beamlines already exist, most notable
is probably SHADOW [WCC94], originally developed by the late Franco Cerrina and
coworkers, now developed further by M. Sanchez Del Rio at the ESRF[Rio+11][Sha].
Other implementations of the same concept are RAY [Sch08] from BESSY and Xtrace[Bau+07].
hosted at ANKA
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4.1.1. Monte Carlo ray tracing simulations

Mathematically, the Monte-Carlo method is an application of the law of large numbers
[Jam80; GRR92]. Let f(u) be a finite continuous integrable function of parameter u
for which an integral estimate is desirable. The discrete statistical mean value of f
(computed as a series) in the uniformly sampled interval a < u < b converges to the
mathematical mean value of f over the same interval.

lim
n→∞

1

n

n∑
i=1,a≤ui≤b

f(ui) =
1

b− a

∫ b

a
f(u)du (4.1)

In the case were the ui values are regularly sampled, we come to the well known
midpoint integration rule. In the case were the ui values are randomly (but uniformly)
sampled, this is the Monte-Carlo integration technique. As random generators are not
perfect, we rather talk about quasi -Monte-Carlo technique. We encourage the reader to
refer to James [Jam80] for a detailed review on the Monte-Carlo method.

4.2. The x-ray weight

A totally realistic semi-classical simulation will require that each x-ray is at any time
either present or lost. On many beamlines the sheer abundance of x-ray photons makes
it impractical to trace each and every photon from the source. This is particularly the
case at XFELs. Additionally, only a very small fraction of the initial x-rays will ever
be detected, and simulations of this kind will therefore waste much time in dealing with
x-rays that never hit the detector.

A way of dealing with these issues and speed up calculations is to introduce a x-ray
”weight factor” for each simulated ray and to adjust this weight according to the path of
the ray. If e.g. the reflectivity of a certain optical component is 10%, and only reflected
x-rays ray are considered later in the simulations, the x-ray weight will be multiplied by
0.10 when passing this component, but every x-ray is allowed to reflect in the component.
In contrast, the totally realistic simulation of the component would require on average
ten incoming x-rays for each reflected one.

Let the initial x-ray weight be p0 and let us denote the weight multiplication factor in
the j’th component by πj . The resulting weight factor for the x-ray ray after passage of
the whole beamline becomes the product of all contributions

p = pn = p0

n∏
j=1

πj . (4.2)

Each adjustement factor should be 0 < πj < 1, except in special circumstances, so that
total flux can only decrease through the simulation. For convenience, the value of p is
updated (within each component) during the simulation.

Simulation by weight adjustment is performed whenever possible. This includes

• Transmission through filters and windows.
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• Reflection from monochromator (and analyser) crystals with finite reflectivity and
mosaicity.

• Reflections from mirrors.

• Passage of a continuous beam through a chopper.

• Scattering from all types of samples.

4.2.1. Statistical errors of non-integer counts

In a typical simulation, the result will consist of a count of x-ray histories (”rays”) with
different weights. The sum of these weights is an estimate of the mean number of x-rays
hitting the monitor (or detector) per second in a “real” experiment. One may write the
counting result as

I =
∑
i

pi = Np, (4.3)

where N is the number of rays hitting the detector and the horizontal bar denotes
averaging. By performing the weight transformations, the (statistical) mean value of
I is unchanged. However, N will in general be enhanced, and this will improve the
accuracy of the simulation.

To give an estimate of the statistical error, we proceed as follows: Let us first for
simplicity assume that all the counted x-ray weights are almost equal, pi ≈ p, and
that we observe a large number of x-rays, N ≥ 10. Then N almost follows a normal
distribution with the uncertainty σ(N) =

√
N 1. Hence, the statistical uncertainty of

the observed intensity becomes

σ(I) =
√
Np = I/

√
N, (4.4)

as is used in real x-ray experiments (where p ≡ 1). For a better approximation we
return to Eq. (4.3). Allowing variations in both N and p, we calculate the variance of
the resulting intensity, assuming that the two variables are independent:

σ2(I) = σ2(N)p2 +N2σ2(p). (4.5)

Assuming as before that N follows a normal distribution, we reach σ2(N)p2 = Np2.
Further, assuming that the individual weights, pi, follow a Gaussian distribution (which
in some cases is far from the truth) we have N2σ2(p) = σ2(

∑
i pi) = Nσ2(pi) and reach

σ2(I) = N
(
p2 + σ2(pi)

)
. (4.6)

The statistical variance of the pi’s is estimated by σ2(pi) ≈ (
∑

i p
2
i −Np2)/(N − 1). The

resulting variance then reads

σ2(I) =
N

N − 1

(∑
i

p2i − p2
)
. (4.7)

1This is not correct in a situation where the detector counts a large fraction of the x-rays in the
simulation, but we will neglect that for now.
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For almost any positive value of N , this is very well approximated by the simple expres-
sion

σ2(I) ≈
∑
i

p2i . (4.8)

As a consistency check, we note that for all pi equal, this reduces to eq. (4.4)

In order to compute the intensities and uncertainties, the detector components in
McXtrace will keep track of N =

∑
i p

0
i , I =

∑
i p

1
i , and M2 =

∑
i p

2
i .

4.3. Weight factor transformations during a Monte Carlo
choice

When a Monte Carlo choice must be performed, e.g. when the initial energy and direction
of the x-ray ray is decided at the source, it is important to adjust the x-ray weight so
that the combined effect of x-ray weight change and Monte Carlo probability of making
this particular choice equals the actual physical properties we like to model.

Let us follow up on the simple example of transmission. The probability of trans-
mitting the real x-ray is P , but we make the Monte Carlo choice of transmitting the
x-ray every time: fMC = 1. This must be reflected on the choice of weight multiplier πj
given by the master equation In the “real” semi-classical world, there is a distribution
(probability density) for the x-rays in the six dimensional (energy, direction, position)
space of Π(E,Ω, r) = dP/(dEdΩd3r) depending upon the source type and its param-
eters (such as gap, period, field strength etc. for an undulator). In the Monte Carlo
simulations, the six coordinates are for efficiency reasons in general picked from another
distribution: fMC(E,Ω, r) 6= Π(E,Ω, r), since one would e.g. often generate only x-rays
within a certain parameter interval. However, we must then require that the weights are
adjusted by a factor πj (in this case: j = 1) so that

fMCπj = P. (4.9)

This probability rule is general, and holds also if, e.g., it is decided to transmit only
half of the rays (fMC = 0.5). An important different example is elastic scattering from a
powder sample, where the Monte-Carlo choices are the particular powder line to scatter
from, the scattering position within the sample and the final x-ray direction within the
Debye-Scherrer cone.

4.3.1. Direction focusing

An important application of weight transformation is direction focusing. Assume that
the sample scatters the x-rays in many directions. In general, only x-rays in some of
these directions will stand any chance of being detected. These directions we call the
interesting directions. The idea in focusing is to avoid wasting computation time on
x-rays scattered in the other directions. This trick is an instance of what in Monte Carlo
terminology is known as importance sampling.
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If e.g. a sample scatters isotropically over the whole 4π solid angle, and all interesting
directions are known to be contained within a certain solid angle interval ∆Ω, only these
solid angles are used for the Monte Carlo choice of scattering direction. According to
Eq. (4.9), the weight factor will then have to be changed by the amount πj = |∆Ω|/(4π).
One thus ensures that the mean simulated intensity is unchanged during a ”correct”
direction focusing, while a too narrow focusing will result in a lower (i.e. wrong) intensity,
since we cut x-rays rays that should have reached the final detector.

Figure 4.1.: Illustration of the effect of direction focusing in McXtrace. Weights of x-rays
emitted into a certain solid angle are scaled down by the full unit sphere
area.

4.4. Stratified sampling

One particular efficiency improvement technique is the so-called stratified sampling. It
consists in partitioning the event distributions in representative sub-spaces, which are
then all sampled individualy. The advantage is that we are then sure that each sub-space
is well represented in the final integrals. This means that instead of shooting N events,
we define D partitions and shoot r = N/D events in each partition. We may define
partitions so that they represent ’interesting’ distributions, e.g. from events scattered
on a monochromator or a sample. The sum of partitions should equal the total space
integrated by the Monte Carlo method, and each partition must be sampled randomly.

In the case of McXtrace, the stratified sampling is used when repeating events, i.e.
when using the SPLIT keyword in the TRACE section on beamline descriptions. We
emphasize here that the number of repetitions r should not exceed the dimensionality
of the Monte Carlo integration space (which is d = 10 for x-ray events) and the dimen-
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Records Accurarcy

103 10 %
104 2.5 %
105 1 %
106 0.25 %
107 0.05 %

Table 4.1.: Accuracy estimate as a function of the number of statistical events used to
estimate an integral with McXtrace.

sionality of the partition spaces, i.e. the number of random generators following the
stratified sampling location in the beamline.

4.5. Accuracy of Monte Carlo simulations

When running a Monte Carlo, the meaningful quantities are obtained by integrating
random events into a single value (e.g. flux), or onto an histogram grid. The theory
[Jam80] shows that the accuracy of these estimates is a function of the space dimension
d and the number of events N . For large numbers N , the central limit theorem provides
an estimate of the relative error as 1/

√
N . However, the exact expression depends on

the random distributions.
McXtrace uses a space with d = 12 parameters to describe x-rays (position, wavevec-

tor, weight, polarisation, phase, time). We show in Table 4.1 a rough estimate of the
accuracy on integrals as a function of the number of records reaching the integration
point. This stands both for integrated flux, as well as for histogram bins - for which the
number of events per bin should be used for N .
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5. Running McXtrace

This chapter describes usage of the McXtrace simulation package. In case of problems
regarding installation or usage, the McXtrace mailing list [Mcx] or the authors should
be contacted.

Important note for Windows users: It is a known problem that some of the
McXtrace tools do not support filenames / directories with spaces. We are working on a
more general approach to this problem, which will hopefully be solved in a future release.
We recommend to use Strawberry Perl 5.18. This distribution of perl also includes a
free c-compiler.

To use McXtrace, an instrument definition file describing the instrument to be simu-
lated must be written. Alternatively, an example instrument file can be obtained from
the examples/ directory in the distribution or from another source.

The input files (instrument and component files) are written in the McXtrace meta-
language and are edited either by using your favourite editor or by using the built in
editor of the graphical user interface (mxgui).

Next, the instrument and component files are compiled using the McXtrace compiler,
relying on built in features from the FLEX and Bison facilities to produce a C program.

The resulting C program can then be compiled with a C compiler and run in combina-
tion with various front-end programs for example to present the intensity at the detector
as a motor position is varied.

The output data may be analyzed and visualized in the same way as regular exper-
iments by using the data handling and visualisation tools in McXtrace based on Perl
and Matlab or PGPLOT. Further data output formats including NeXus and XML are
available, see section 5.4.

To start the graphical user interface of McXtrace, run the command mxgui (mxgui.pl
on Windows). This will open a window with a number of menus, see figure 5.1.

To load an instrument, select “Maxlab” from the “x-ray site” menu and open the file
MAXII_711.instr. Next click the “Run” button to start the simulation. This triggers
a compilation of the instrument file and pops up a dialog window. For instance type a
value for the “R”-parameter (This corresponds to the curvature of the focusing mirror),
check the “Plot results” option, and select “Start”. The simulation will run, and when
it finishes after a while the results will be plotted in a window. If you use the default
PGPLOT plotting back-end, the presented graphics will resemble that shown in figure
5.

To visualize or debug the simulation graphically, repeat the steps but check the “Trace”
option instead of the “Simulate” option. A window will pop up showing a sketch of the
instrument. Depending on your chosen plotting backend, the presented graphics will
resemble one of those shown in figures 5.3-5.4.
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Figure 5.1.: The graphical user interface mxgui.pdf.

Figure 5.2.: Output from mxplot with the PGPLOT backend

5.1. Running the instrument compiler

This section describes how to run the McXtrace compiler manually. Often, it will be
more convenient to use the front-end program mxgui or mxrun (section 5.3.2). These
front-ends will compile and run the simulations automatically.

The compiler for the McXtrace instrument definition is invoked by typing a command
of the form

mcxtrace name.instr

in a shell or command prompt. On windows it is convenient to launch the command
prompt through the desktop icon named mcxtrace-shell. This is a utility script that sets
up the necessary environment variables as appropriate.
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Figure 5.3.: Output from mxdisplay with PGPLOT backend. The left mouse button
starts a new photon ray, the middle button zooms, and the right button
resets the zoom. The Q key quits the program. See section 5.3.3 for details.

Figure 5.4.: Output from mxdisplay with Matlab backend. Display can be adjusted
using the window buttons.

This will read the beamline definition name.instr which is written in the McXtrace
meta-language. The compiler will translate the instrument definition into a Monte Carlo
simulation program provided in ISO-C. The output is by default written to a file in the
current directory with the same name as the instrument file, but with extension .c rather
than .instr. This can be overridden using the -o option as follows:

mcxtrace -o code.c name.instr

which gives the output in the file code.c. A single dash ‘-’ may be used for both input
and output filename to represent standard input and standard output, respectively.
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5.1.1. Code generation options

By default, the output files from the McXtrace compiler are in ISO-C with some exten-
sions (currently the only extension is the creation of new directories, which is not possible
in pure ISO-C). The use of extensions may be disabled with the -p or --portable op-
tion. With this option, the output is strictly ISO-C compliant, at the cost of some slight
reduction in capabilities.

The -t or --trace option puts special “trace” code in the output. This code makes it
possible to get a complete trace of the path of every photon ray through the instrument,
as well as the position and orientation of every component. This option is mainly used
with the mxdisplay front-end as described in section 5.3.3.

The code generation options can also be controlled by using preprocessor macros in
the C compiler, without the need to re-run the McXtrace compiler. If the preprocessor
macro MC_PORTABLE is defined, the same result is obtained as with the --portable

option of the McXtrace compiler. The effect of the --trace option may be obtained by
defining the MC_TRACE_ENABLED macro. Most Unix-like C compilers allow preprocessor
macros to be defined using the -D option, eg.

cc -DMC_TRACE_ENABLED -DMC_PORTABLE ...

Finally, the --verbose option will list the components and libraries beeing included in
the instrument.

5.1.2. Specifying the location of files

The McXtrace compiler needs to be able to find various files during compilation, some
explicitly requested by the user (such as component definitions and files referenced by
%include), and some used internally to generate the simulation executable. McXtrace
looks for these files in three places: first in the current directory, then in a list of
directories given by the user, and finally in a special McXtrace directory. Usually,
the user will not need to worry about this as McXtrace will automatically find the
required files. But if users build their own component library in a separate directory
or if McXtrace is installed in an unusual way, it may be necessary to tell the compiler
where to look for the files.

The location of the special McXtrace directory is set when McXtrace is compiled. It de-
faults to /usr/local/mcxtrace/VERSION/ on Unix-like systems and C:\mcxtrace-VERSION\lib

on Windows systems, but it can be changed to something else during the installation
process. The location can be overridden by setting the environment variable MCXTRACE:

setenv MCXTRACE /home/joe/mcxtrace

for csh/tcsh users, or

export MCXTRACE=/home/joe/mcxtrace
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for bash/Bourne shell users. Windows users, that do not wish to use the desktop shortcut
mcxtrace-shell-1.2, should define the MCXTRACE from the menu ’Start/Settings/Con-
trol Panel/System/Advanced/Environment Variables’ by creating MCXTRACE with the
value C:\mcxtrace-1.2\lib

To make McXtrace search additional directories for component definitions and include
files, use the -I switch for the McXtrace compiler:

mcxtrace -I/home/joe/components -I/home/joe/xrays/include name.instr

Multiple -I options can be given, as shown.

5.1.3. Embedding the generated simulations in other programs

By default, McXtrace will generate a stand-alone C program, which is what is needed in
most cases. However, for advanced usage, such as embedding the generated simulation
in another program or even including two or more simulations in the same program, a
stand-alone program is not appropriate. For such usage, the McXtrace compiler provides
the following options:

• --no-main This option makes McXtrace omit the main() function in the generated
simulation program. The user must then arrange for the function mcxtrace_main()

to be called in some way.

• --no-runtime Normally, the generated simulation program contains all the run-
time C code necessary for declaring functions, variables, etc. used during the
simulation. This option makes McXtrace omit the run-time code from the gen-
erated simulation program, and the user must then explicitly link with the file
mcxtrace-r.c as well as other shared libraries from the McXtrace distribution.

Users that need these options are encouraged to contact the authors for further help.

5.1.4. Running the C compiler

After the source code for the simulation program has been generated with the McXtrace
compiler, it must be compiled with the C compiler to produce an executable. The
generated C code obeys the ISO-C standard, so it should be easy to compile it using
any ISO-C (or C++) compiler. E.g. a typical Unix-style command would be

cc -O -o name.out name.c -lm

The McXtrace team recommends these compiler alternatives for the Intel (and AMD)
hardware architectures:

A gcc which is a very portable, open source, ISO-C compatible c compiler, available
for most platforms. For Linux it is usually part of your distribution, for Windows
the recommended perl distribution (strawberry perl [Str]) includes mingw, a ver-
sion og gcc for windows. For Mac OS X gcc is part of the Xcode tools package
available on the installation medium.
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B icc or the Intel c compiler is available for Linux, Mac OS and Windows systems
and is a commercial software product. Generally, simulations run with the Intel
compiler are a factor of 2 faster than the identical simulation run using gcc. To
use icc with McXtrace on Linux or Mac OS X, set the environment variables

– MCXTRACE_CC=icc

– MCXTRACE_CFLAGS="-g -O2 -wd177,266,1011,181"

The latter is to silence a number of warnings. To use icc with MPI on Unix
system (see Section 5.5) installations, it seems that editing the mpicc shell script
and setting the CC variable to ”icc” is the only requirement! On Windows, the
Intel c compiler is ’icl’, not ’icc’ and has a dependency for Microsoft Visual C++. If
you have both these softwares available, running McXtrace with the Intel compiler
should be possible (currently untested by the McXtrace developer team).

The -O option typically enables the optimization phase of the compiler, which can
make quite a difference in speed of McXtrace generated simulations. The -o name.out

sets the name of the generated executable. The -lm options is needed on many systems
to link in the math runtime library (like the cos() and sin() functions).

Monte Carlo simulations are computationally intensive, and it is often desirable to
have them run as fast as possible. Some success can be obtained by adjusting the
compiler optimization options.

A warning is in place here: it is tempting to spend far more time fiddling with compiler
options and benchmarking than is actually saved in computation times. Optimization
flags will typically result in a speed improvement by a factor about 3, but the compilation
of the instrument may be 5 times slower. Even worse, compiler optimizations are notori-
ously buggy; some options have been known to generate incorrect code in some compiler
versions. McXtrace actually puts an effort into making the task of the C compiler eas-
ier, by in-lining code and using variables in an efficient way. As a result, McXtrace
simulations generally run quite fast, often fast enough that further optimizations are
not worthwhile. Also, optimizations are highly memory consuming during compilation,
and thus may fail when dealing with large instrument descriptions (e.g. more that 100
elements). The compilation process is simplified when using components of the library
making use of shared libraries (see SHARE keyword in chapter 6). Refer to section 5.2.3
for other optimization methods.

5.2. Running the simulations in a shell

Once the simulation program has been generated by the McXtrace compiler and an
executable has been obtained with the C compiler, the simulation can be run in various
ways. The simplest way is to run it directly from the command line or shell:

./name.out

(Or name.exe on windows. In the following we will only list the .out)
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Note the leading “.”, which is needed if the current directory is not in the path searched
by the shell. When used in this way, the simulation will prompt for the values of any
instrument parameters such as motor positions, and then run the simulation. Default
instrument parameter values (see section 6.3), if any, will be indicated and entered
when hitting the Return key. This way of running McXtrace will only give data for
one beamline setting. Sometimes a scan over various beamline settings is required, in
which case multiple simulation runs are required. Often the simulation will be run using
one of several available front-ends, as described in the next section. These front-ends
help manage output from the potentially many monitors in the instruments, as well as
running the simulation for each data point in a scan.

The generated simulations accept a number of options and arguments. The full list
can be obtained using the --help option:

./name.out --help

The values of instrument parameters may be specified as arguments using the syntax
name=val. For example

./Samples_vanadium.out ROT=90

The number of photon histories to simulate may be set using the --ncount or -n option,
for example --ncount=2e5. The initial seed for the random number generator is by
default chosen based on the current time so that it is different for each run. However,
for debugging purposes it is sometimes convenient to use the same seed for several runs,
so that the same sequence of random numbers is used each time. To achieve this, the
random seed may be set using the --seed or -s option.

By default, McXtrace simulations write their results into several data files in the
current directory, overwriting any previous files stored there. The --dir=dir or -ddir
option causes the files to be placed instead in a newly created directory dir (to prevent
overwriting previous results the simuation is aborted and an error message is issued if
the directory already exists). Alternatively, all output may be written to a single file file
using the --file=file or -ffile option (which should probably be avoided when saving
in binary format, see below). If the file is given as NULL, the file name is automatically
built from the instrument name and a time stamp. The default file name is mccode

followed by appropriate extension.

The complete list of options and arguments accepted by McXtrace simulations appears
in Tables 5.1 and 5.2.

Data files contain header lines with information about the simulation from which they
originate. In case the data must be analyzed with programs that cannot read files with
such headers, they may be turned off using the --data-only or -a option.

The format of the output files from McXtrace simulations is described in more detail
in section 5.4. It may be chosen either with --format=FORMAT for each simulation or
globally by setting the MCXTRACE FORMAT environment variable. The available
format list is obtained using the name.out --help option, and shown in Table 5.3.
Additionally, adding the raw keyword to the FORMAT will produce raw [N, p, p2] data
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-s seed

--seed=seed

Set the initial seed for the random number generator. This
may be useful for testing to make each run use the same ran-
dom number sequence.

-n count

--ncount=count

Set the number of photon histories to simulate. The default
is 1,000,000. (1e6)

-d dir

--dir=dir

Create a new directory dir and put all data files in that di-
rectory.

-h

--help

Show a short help message with the options accepted, avail-
able formats and the names of the parameters of the instru-
ment.

-i

--info

Show extensive information on the simulation and the instru-
ment definition it was generated from.

-t

--trace

This option makes the simulation output the state of every
photon as it passes through every component. Requires that
the -t (or --trace) option is also given to the McXtrace
compiler when the simulation is generated.

--no-output-files This option disables the writing of data files (output to the
terminal, such as detector intensities, will still be written).

--format=FORMAT This option sets the file format for result simulation and data
files.

-N STEPS Divide simulation into STEPS, varying parameters within
given ranges ’min,max’.

param =value

min,max

Set the value of an instrument parameter, rather than hav-
ing to prompt for each one. Scans ranges are specified as
’min,max’.

Table 5.1.: Options accepted by McXtrace simulations. For options specific to MPI and
parallel computing, see section 5.5.

sets instead of [N, p, σ] (see Section 4.2.1). The former representation is fully additive,
and thus enables to add results from separate simulations (e.g. when using a computer
Grid - which is automated in the mxformat tool). Other acceptable format modifiers are
transpose to transpose data matrices and append to catenate data to existing files.

5.2.1. Basic import and plot of results in matlab

To import a McXtrace ascii data file, while ignoring the header lines, in matlab one may
use the following command:

matlab> s=textread(’plot’,’CommentStyle’,’shell’);

When choosing the HTML format, the simulation results are saved as a web page,
whereas the monitor data files are saved as VRML files, displayed within the web page.
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-f file

--file=file

Write all data into a single file file. Avoid when using
binary formats.

-a

--data-only

Do not put any headers in the data files.

--format data=FORMAT This option sets the file format for result data files
from monitors. This enables to have simulation files
in one format (e.g. HTML), and monitor files in an
other format (e.g. VRML).

--mpi=NB CPU This option will distribute the simulation over
NB CPU nodes (requires MPI to be installed).

--multi=NB CPU

--grid=NB CPU

This option will distribute the simulation over
NB CPU nodes (requires SSH to be installed).

--machines=MACHINES Specify a list of distant machines/nodes to be used
for MPI and grid clustering. Default is to use local
SMP cluster.

--optim Run in optimization mode to find best parameters
in order to maximize all monitor integral values.
Parameters to be varied are given just like scans
(min,max).

--optim=COMP Same as --optim but for specified monitors. This
option may be used more than once.

--optim-prec=ACCURACY Sets accuracy criteria to end parameter optimization
(default is 10−3).

--test Run McXtrace self test.

-c

--force-compile

Force to recompile the instrument.

Table 5.2.: Additional options accepted by McXtrace simulations.
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McXtrace

PGPLOT

.sim Original format for PGPLOT plotter (may be used with -f
and -d options)

XML .xml XML format, NeXus-like (may be used with -f and -d options).
HTML .html HTML format (generates a web page, may be used with -f and

-d options). Data files are saved as VRML objects (OpenGL).
VRML .wrl Virtual Reality file format for data files. Simulation files are

not saved properly, and the HTML format should be used
preferably.

NeXus .nxs NeXus data files (HDF). All simulation results are stored in
a unique compressed binary file. This format requires to have
NeXus installed.

McXtrace events McXtrace event files in text or binary format. Use
Virtual_input/Virtual_output components.

Table 5.3.: Available formats supported by McXtrace simulations. Format modifiers
include raw, transpose, append.

5.2.2. Interacting with a running simulation

Once the simulation has started, it is possible, under Unix, Linux and Mac OS X systems,
to interact with the on-going simulation. This feature is not available when using MPI
parallelization.

McXtrace attaches a signal handler to the simulation process. In order to send a
signal to the process, the process-id pid must be known. Users may look at their running
processes with the Unix ’ps’ command, or alternatively process managers like ’top’ and
’gtop’. If a file.out simulation obtained from McXtrace is running, the process status
command should output a line resembling

<user> 13277 7140 99 23:52 pts/2 00:00:13 file.out

where user is your Unix login. In this case pid is ’13277’.
Once known, it is possible to send one of the signals listed in Table 5.4 using the ’kill’

unix command (or the functionalities of your process manager), e.g.

kill -USR2 13277

This will result in a message showing status (here 33 % achieved), as well as the position
in the instrument of the current photon.

# \MCX : [pid 13277] Signal 12 detected SIGUSR2 (Save simulation)

# Simulation: file (file.instr)

# Breakpoint: MyDetector (Trace) 33.37 % ( 333654.0/ 1000000.0)

# Date : Wed May 7 00:00:52 2003

# \MCX : Saving data and resume simulation (continue)
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USR1 Request informations (status)
USR2, HUP Request informations and performs an intermediate saving of

all monitors (status and save). This triggers the execution of
all SAVE sections (see chapter 6).

INT, TERM Save and exit before end (status)

Table 5.4.: Signals supported by McXtrace simulations.

followed by the list of detector outputs (integrated counts and files). Finally, sending a
kill 13277 (which is equivalent to kill -TERM 13277) will end the simulation before
the initial ’ncount’ preset.

A typical usage example would be, for instance, to save data during a simulation, plot
or analyze it, and decide to interupt the simulation earlier if the desired statistics has
been achieved. This may be done automatically using the Progress_bar component.

Whenever simulation data is generated before end (or the simulation is interupted), the
’ratio’ field of the monitored data will provide the level of achievement of the computation
(for instance ’3.33e+05/1e+06’). Intensities are then usually to be scaled accordingly
by the user.

Additionally, any system error will result in similar messages, giving indication about
the occurence of the error (component and section). Whenever possible, the simulation
will try to save the data before ending. Most errors appear when using a newly written
component, in the INITIALIZE, TRACE or FINALLY sections. Memory errors usually
show up when C pointers have not been allocated/unallocated before usage, whereas
mathematical errors are found when, for instance, dividing by zero.

5.2.3. Optimizing simulation speed

There are various ways to speed up simulations

• Optimize the compilation of the instrument, as explained in section 5.1.4.

• Execute the simulation in parallel on a computer grid or a cluster (with MPI or
ssh grid ) as explained in section 5.5.

• Complex components usually take into account additional small effects in a simula-
tion, but are much longer to execute. Thus, simple components should be prefered
whenever possible, at least in the beginning of a simulation project.

• The SPLIT keyword may artificially repeat events reaching specified positions in
the instrument. This is very efficient, but requires to cast random numbers in the
course of the remaining propogagtion (e.g. at samples, crystals, ...). See section
6.4.7 for details.

A general comment about optimization is that it should be used cautiously, checking
that the results are not significatively affected.
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5.2.4. Optimizing instrument parameters

Often, the user may wish to optimize the parameters of a simulation (e.g. find the
optimal curvature of a monochromator, or the best geometry of a given component).

The choice of the optimization routine, of the simulation quality value to optimize,
the initial parameter guess and the simulation length all have a large influence on the
results. The user is adviced to be cautious when interpreting the optimization results.

Optimization using the Simplex method

The McXtrace package comes with a Simplex optimization method to find best instru-
ment parameters in order to maximize all or some specified monitor integrated values.
It uses the Downhill Simplex Method in Multidimensions [NM65; Pre+02] which is a
geometric optimization method somewhat similar to genetic algorithms. It is not as fast
as the gradient method, but is much more robust. It is well suited for problems with up
to about 10-20 parameters to optimize. Higher dimensionalities are not guaranteed to
converge to a meaningful solution.

When using mxrun (section 5.3.2), the optimization mode is set by using the --optim

option or a list of monitors to maximize with as many --optim=COMP as required. The
optimization accuracy criterion may be changed with the --optim-prec=accuracy op-
tion.

From mxgui (section 5.3.1), one should choose the ’Optimization’ execution mode
(instead of the Simulation or Trace mode). Then speficy the instrument parameters
to optimize by indicating their variation range param=min,max (e.g. Lambda=1,4) just
like parameter scans. Optionally, the starting guess value might be given with the
syntax param=min,guess,max. The optimization accuracy criterion is controlled using
the ’Precision’ entry box in the configuration options (See Figure 5.5). Finally, run the
simulation. The optimum set of parameters is then printed at the end of the simulation
process. You may ask to maximize only given monitors (instead of all) by selecting their
component names in the lower lists in the Run Dialog (up to 3).

If you would like to maximize the flux at a given monitor, with some divergence con-
strains, you should for instance simply add a divergence collimator before the monitor.
Alternatively, write a new component that produce the required ’figure-of-merit’.

The optimization search interval constrains the evolution of parameters. It should be
chosen carefully. In particular it is safer for it to indeed contain a high signal domain,
and be preferably symmetric with respect to that maximum.

5.3. Using the simulation tool layer

McXtrace includes a number of auxilliary programs that extend the functionality of the
simulations. For instance the mcxrun front-end program is an interface between the user
and the simulations, capable of running series of simulations and storing the results in
a structured manner.
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The list of available McXtrace front-end programs may be obtained from the mxdoc --tools

command:

McXtrace Tools

mxtrace Main instrument compiler

mxrun Instrument build and execution utility

mxgui Graphical User Interface instrument builder

mxdoc Component library documentation generator/viewer

mxplot Simulation result viewer

mxdisplay Instrument geometry viewer

mxformat Conversion tool for text files and MPI/grids

mxdaemon Instrument results on-line plotting

When used with the -h flag, all tools display a specific help.

SEE ALSO: mcxtrace, mxdoc, mxplot, mxrun, mxgui

DOC: Please visit http://www.mcxtrace.org

5.3.1. The graphical user interface (mxgui)

The front-end mxgui provides a graphical user interface that interfaces the various parts
of the McXtrace package. It is started from a shell/command prompt using simply the
command

mxgui

The mxgui program may optionally be given the name of an instrument file. On windows
it is probably more convenient to start mxgui using the desktop icon.

When the front-end is started, a main window is opened (see figure 5.1). This window
displays the output from compiling and running simulations, and also contains a few
menus and buttons. The main purpose of the front-end is to edit and compile instrument
definitions, run the simulations, and visualize the results.

The menus

The File menu has the following features:

File/Open instrument selects the name of an instrument file to be used.

File/Edit current opens a simple editor window with McXtrace syntax highlighting for
editing the current instrument definition. This function is also available from the
Edit button to the right of the name of the instrument definition in the main
window.

File/Edit current (detached) As above but creates a detached process, such that the
editor window remains open after the main windows has been closed.

File/Compile instrument forces a recompile of the instrument definition, regardless of
file dates. This is for example useful to pick up changes in component definitions,
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which the front-end will not notice automatically. This might also be required
when choosing MPI and NeXus options . See chapter 3 for how to override default
C compiler options.

File/Save log file saves the text in the window showing output of compilations and
simulations into a file.

File/Clear output erases all text in the window showing output of compilations and
simulations.

File/Preferences Opens the choose backend dialog shown in figure 5.5. Several settings
can be chosen here:

• Selection of the desired (PGPLOT—HTML/VRML) output format and pos-
sibility to save ’binary files’ when applicable (improved disk I/O).

• One- or three-pane view of your instrument in trace mode when using PG-
PLOT.

• Clustering option (None—MPI—ssh)

• Choice of editor to use when editing instrument files.

• Automatic quotation of strings when inserting in the built-in editor.

• Possibility to not optimize when compiling the generated c-code. This is
very handy when setting up an instrument model, which requires regular
compilations.

• Adjustment of final precision when doing parameter optimization.

To save the chosen settings for your next McXtrace run, use Save Configuration
in the File menu.

File/Save configuration saves user settings from Configuration options and Run dia-
logue to disk.

File/Quit exits the graphical user interface front-end.

The Simulation menu has the following features:

Simulation/Read old simulation prompts for the name of a file from a previous run
of a McXtrace simulation (usually called mccode.sim). The file will be read and
any detector data plotted using the mxplot front-end. The parameters used in
the simulation will also be made the defaults for the next simulation run. This
function is also available using the “Read” button to the right of the name of the
current simulation data.

Simulation/Run simulation opens the run dialog window, explained further below.

Simulation/Plot results plots (using mxplot) the results of the last simulation run or
spawns a load dialogue to load a set of results.

37



Figure 5.5.: The “configuration options” dialog in mxgui.

The X-ray Site menu contains a list of template/example instruments as found in
the McXtrace library, sorted by x-ray site. When selecting one of these, a local copy
of the instrument description is transfered to the active directory (so that users have
modification rights) and loaded. One may then view its source (Edit) and use it directly
for simulations/trace (3D View).
The Tools menu gathers minor tools.

Tools/Plot current/other results Plot current simulation results and other results.

Tools/Online plotting of results installs a DSA key to be used for ssh clustering and
MPI (see section 5.5).

Tools/Dataset convert/merge Opens a GUI to the mxformat tool, in order to convert
datasets to other formats, merge scattered dataset (e.g. from successive or grid
simulations), and assemble scan sets. This tool does not handle raw event files.

Tools/Shortcut keys displays the shortcut keys used for running and editing instru-
ments.

Tools/Activate MPI/grid (DSA key) installs a DSA key to be used for ssh clustering
and MPI (see section 5.5).

The Help menu has the following features, through use of mxdoc and a web browser. To
customize the used web browser, set the BROWSER environment variable. If BROWSER is
not set, mxgui uses netscape/mozilla/firefox on Unix/Linux and the default browser
on Windows.

Help/McXtrace User manual calls mxdoc --manual, brings up the local pdf version of
this manual, using a web browser.

Help/McXtrace Component manual calls mxdoc --comp, brings up the local pdf ver-
sion of the component manual, using a web browser.
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Help/Component library index displays the component documentation using the com-
ponent index file: index.html.

Help/McXtrace web page calls mxdoc --web, brings up the McXtrace website in a web
browser.

Help/Tutorial Opens the McXtrace tutorial for a quick start. (Disabled - Please see the
McXtrace web page[Mcx] for an updated tutorial).

Help/Current instrument info generates a description web-page of the current edited
instrument.

Help/Test McXtrace installation launches a self test procedure to check that the McX-
trace package is installed properly, generates accurate results, and may use the
plotter to display the results.

Help/Generate component index locally (re-)generates the component index.html.

The run dialog

Figure 5.6.: The run dialog in mxgui.

The run dialog is used to run simulations. It allows the entry of instrument parameters
as well as the specifications of options for running the simulation (see section 5.2 for
details). It also allows to run the mxdisplay (section 5.3.3) and mxplot (section 5.3.4)
front-ends together with the simulation.

The meaning of the different fields is as follows:

Run:Instrument parameters allows the setting of the values for the input parameters
of the instrument. The type of each instrument parameter is given in parenthe-
sis after each name. Floating point numbers are denoted by (D) (for the C type
“double”), (I) denotes integer parameters, and (S) denotes strings. For parameter
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scans and optimizations, enter the minimum and maximum values to scan/opti-
mize, separated by a comma, e.g. 1,10 and do not forget to set the # Scanpoints
to more than 1.

Run:Output to allows the entry of a directory for storage of the resulting data files in
(like the --dir option). If no name is given, a new directory with a unique name
is created, to avoid overwriting data.

Run:Force Forces to overwrite existing data files

Photon count sets the number of photon rays to simulate (the --ncount option).

Run:Random seed/Set seed to selects between using a random seed (different in each
simulation) for the random number generator, or using a fixed seed (to reproduce
results for debugging).

Run:Simulate/Trace (3D)/Optimize selects between several modes of running the sim-
ulation:

• Simulate: Perform a normal simulation or a scan when #steps is set to non-
zero value.

• Trace (3D view): View the instrument in 3D tracing indivitual photons
through the instrument

• Simulate (bg): Perform a simulation or scan but put the process in the back-
ground. This frees the GUI to continue working while the simulation is run-
ning.

• Optimize (bg): Find the optimum value of the simulation parameters in the
given ranges (see section 5.2.4). The process is put in the background.

Run:# steps / # optim Sets the number of simulation to run when performing a pa-
rameter scan or the number of iterations to perform in optimization mode.

Run:Plot results If checked, the mxplot front-end will be run after the simulation has
finished, and the plot dialog will appear (see below).

Run:Format Quick selection of output format. Binary mode may be checked from the
“Simulation/Configuration options” dialog box.

Run:Clustering method Selects the mechanism to be used for running on grids and
clusters. See section 5.5 on parallel computing for more informations.

Run:Number of nodes Sets the number of nodes to use for MPI/ssh clustering.

Run:Inspect component (Trace mode) Trace only photon trajectories that reach a given
component (e.g. sample or detector).

Run:First component (Trace mode) Selects the first component to plot (default is first)
in order to define a region of interest.
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Run:Last component (Trace mode) Selects the last component to plot (default is first)
in order to define a region of interest.

Run:Maximize monitor (Optimization mode) Selects up to three monitors whose in-
tegral value should be maximized, varying instrument parameters. If none are
selected, all monitors are used.

Run:Start runs the simulation.

Run:Cancel aborts the dialog.

Most of the settings on the run dialog are saved for your next McXtrace run.

Before running the simulation, the instrument definition is automatically compiled if
it is newer than the generated C file (or if the C file is newer than the executable). The
executable is assumed to have a .out suffix in the filename. NB: If components are
changed, automatic compilation is not performed. Use the File/Compile menu item in
the main windows.

The editor window

The editor window provides a simple editor for creating and modifying instrument defini-
tions. Apart from the usual editor functions, the “Insert” menu provides some functions
that aid in the construction of the instrument definitions:

Editor Insert/Instrument template inserts the text for a simple instrument skeleton in
the editor window.

Editor Insert/Component. . . opens up a dialog window with a list of all the components
available for use in McXtrace. Selecting a component will display a description.
Double-clicking will open up a dialog window allowing the entry of the values of
all the parameters for the component (figure 5.7). See section 6.3 for details of the
meaning of the different fields.

The dialog will also pick up those of the users own components that are present
in the current directory when mxgui is started. See section 6.7 for how to write
components to integrate well with this facility.

Editor Insert/Type These menu entries give quick access to the entry dialog for the
various component types available, i.e. Sources, Optics, Samples, Monitors, Misc,
Contrib and Obsolete.

To use the mxgui front-end, the programs Perl and Perl/Tk must be properly installed
on the system. Additionally, if the McXtrace/PGPLOT back-end is used for data format,
PGPLOT, and PDL will be required. It may be necessary to set the PGPLOT_DIR and
PGPLOT_DEV environment variable; consult the documentation for PGPLOT on the local
system in case of difficulty.
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Figure 5.7.: Component parameter entry dialog.

5.3.2. Running simulations on the commandline (mxrun)

The mxrun front-end (mxrun.pl on Windows) provides a convenient command-line inter-
face for running simulations with the same automatic compilation features available in
the mxgui front-end. It also provides a facility for running a series of simulations while
varying an input parameter.

The command

mxrun sim args ...

will compile the instrument definition sim.instr (if necessary) into an executable sim-
ulation sim.out. It will then run sim.out, passing the argument list args

The possible arguments are the same as those accepted by the simulations themselves
as described in section 5.2, with the following extensions:

• The -c or --force-compile option may be used to force the recompilation of the
instrument definition, regardless of file dates. This may be needed in case any
component definitions are changed (in which case mxrun does not automatically
recompile), or if a new version of McXtrace has been installed.

• The -p file or --param=file option may be used to specify a file containing
assignment of values to the input parameters of the instrument definition. The
file should consist of specifications of the form name =value separated by spaces
or line breaks. Multiple -p options may be given together with direct parameter
specifications on the command line. If a parameter is assigned multiple times, later
assignments override previous ones.
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• The -N count or --numpoints=count option may be used to perform a series of
count simulations while varying one or more parameters within specified intervals.
Such a series of simulations is called a scan. To specify an interval for a parameter
X, it should be assigned two values separated by a comma. For example, the
command

mxrun sim.instr -N4 X=2,8 Y=1

would run the simulation defined in sim.instr four times, with X having the
values 2, 4, 6, and 8, respectively.

After running the simulation, the results will be written to the file mccode.dat by
default. This file contains one line for each simulation run giving the values of the
scanned input variables along with the integrated intensity and estimated error in
all monitors.

• When performing a scan, the -f file and --file=file options make mxrun write
the output to the files file .dat and file .sim instead of the default names.

• When performing a scan, the -d dir and --dir=dir options make mxrun put
all output in a newly created directory dir. Additionally, the directory will have
subdirectories 1, 2, 3,. . . containing all data files output from the different simula-
tions. When the -d option is not used, no data files are written from the individual
simulations (in order to save disk space).

• The mxrun --test command will test your McXtrace installation.

The -h option will list valid options. The mxrun front-end requires a working instal-
lation of Perl to run.

5.3.3. Graphical display of simulations (mxdisplay)

The front-end mxdisplay (mxdisplay.pl on Windows) is a graphical debugging tool. It
presents a schematic drawing of the instrument definition, showing the position of the
components and the paths of the simulated photons through the instrument. It is thus
very useful for debugging a simulation, for example to spot components in the wrong
position or to find out where photons are getting lost. (See figures 5.3-5.4.)

To use the mxdisplay front-end with a simulation, run it as follows:

mxdisplay sim args . . .

where sim is the name of either the instrument source sim.instr or the simulation
program sim.out generated with McXtrace, and args . . . are the normal command line
arguments for the simulation, as explained above. The -h option will list valid options.

The drawing back-end program may be selected among PGPLOT, VRML, Matlab
and Scilab using either the -pPLOTTER option or using the current MCXTRACE_FORMAT
environment variable. For instance, calling
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mxdisplay -pmatlab ./Samples_vanadium.out ROT=90

or (csh/tcsh syntax)

setenv MCXTRACE_FORMAT matlab

mxdisplay ./Samples_vanadium.out ROT=90

will output graphics using matlab. The mxdisplay front-end can also be run from the
mxgui front-end. Examples of plotter appearence for mxdisplay is shown in figures
5.3-5.4.

McXtrace/PGPLOT back-end This will view the instrument from above. A multi-
display that shows the instrument from three directions simultaneously can be shown
using the --multi or -m options:

mxdisplay --multi sim.out args . . .

Click the left mouse button in the graphics window or hit the space key to see the
display of successive photon trajectories. The ‘P’ key saves a postscript file containing
the current display that can be sent to the printer to obtain a hardcopy; the ‘C’ key
produces color postscript. To stop the simulation prematurely, type ‘Q’ or use control-C
as normal in the window in which mxdisplay was started.

To see details in the instrument, it is possible to zoom in on a part of the instrument
using the middle mouse button (or the ‘Z’ key on systems with a one- or two-button
mouse). The right mouse button (or the ‘X’ key) resets the zoom. Note that after
zooming, the units on the different axes may no longer be equal, and thus the angles as
seen on the display may not match the actual angles.

Another way to see details while maintaining an overview of the instrument is to
use the --zoom=factor option. This magnifies the display of each component along the
selected axes only, e.g. a Soller collimator is magnified perpendicular to the photon
beam but not along it. This option may produce rather strange visual effects as the
photon passes between components with different coordinate magnifications, but it is
occasionally useful.

When debugging, it is often the case that one is interested only in photons that reach
a particular component in the instrument. For example, if there is a problem with the
sample one may prefer not to see the photons that are absorbed in the monochromator
shielding. For these cases, the --inspect=comp option is useful. With this option, only
photons that reach the component named comp are shown in the graphics display.

The mxdisplay front-end will then require the Perl and PGPLOT packages to be
installed. It may be necessary to set the PGPLOT_DIR and PGPLOT_DEV environment
variable; consult the documentation for PGPLOT on the local system in case of difficulty.

McXtrace Matlab back-end A 3D view of the instrument, and various operations
(zoom, export, print, trace photons, . . . ) is available from a dedicated Graphical User

44



Interface. The --inspect option may be used (see previous paragraph), as well as the
--first and --last options to specify a region of interest. The mxdisplay front-end
requires Perl and Matlab to be installed.

VRML/OpenGL back-ends When using the -pVRML option, the instrument is shown
in Virtual Reality (using OpenGL). You may then walk aside instrument, or go inside
elements following x-ray trajectories. As all xray trajectories are stored into a VRML
file, we recommend limiting the number of stored trajectories to below 1000, otherwise
file size and processing time becomes significant. The --inspect option is not available
in VRML format display.

5.3.4. Plotting the results of a simulation (mxplot)

The front-end mxplot (mxplot.pl on Windows) is a program that produces plots of all the
monitors in a simulation, and it is thus useful to get a quick overview of the simulation
results.

In the simplest case, the front-end is run simply by typing

mxplot

This will plot any simulation data stored in the current directory, which is where simu-
lations store their results by default. If the --dir or --file options have been used (see
section 5.2), the name of the file or directory should be passed to mxplot, e.g. “mxplot
dir ” or “mxplotfile ”. It is also possible to plot one single text (not binary) data file
from a given monitor, passing its name to mxplot.

The drawing back-end program may be selected among PGPLOT, VRML, and Matlab
using either the -pPLOTTER option (e.g. mxplot -pmatlab file) or using the current
MCXTRACE_FORMAT environment variable. Moreover, the drawing back-end program will
also be set depending on the file extension (see Table 5.3).

It should be emphasized that mxplot may only display simulation results with the
format that was chosen during the computation. Indeed, if you request data in a given
format from a simulation, you will only be able to display results using that same drawing
back-end.

The mxplot front-end can also be run from the mxgui front-end.

The initial display shows plots for each detector in the simulation. Examples of plotter
appearence for mxplot is shown in figures 5.3-5.

McXtrace/PGPLOT back-end Clicking the left mouse button on a plot produces a
full-window version of that plot. The ‘P’ key saves a postscript file containing the current
plot that can be sent to the printer to obtain a hardcopy; the ‘C’ key produces color
postscript. The ‘Q’ key quits the program (or CTRL-C in the controlling terminal may
be used as normal).

To use the mxplot front-end with PGPLOT, Perl, PGPLOT, and PDL must all be
properly installed on the system. It may be necessary to set the PGPLOT_DIR and
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PGPLOT_DEV environment variable; consult the documentation for PGPLOT on the local
system in case of difficulty.

5.3.5. Creating and viewing the library, component/instrument help and
Manuals (mxdoc)

McXtrace provides an easy way to generate automatically an HTML help page about a
given component or instrument, or the whole McXtrace library.

mxdoc

mxdoc comp—instr
mxdoc --tools

The first example generates an index.html catalog file using the available components
and instruments (both locally, and in the McXtrace library). The library catalog of
components is opened using the BROWSER environment variable (e.g. netscape, konqueror,
nautilus, MSIE, mozilla, . . . ). If the BROWSER is not defined, the help is displayed as text
in the current terminal. This latter output may be forced with the -t or --text option.

Alternatively, if a component or instrument comp is specified as in the second example,
it will be searched within the library, and an HTML help will be created for all available
components matching comp.

The last example will list the name and description of all McXtrace tools.
Additionally, the options --web, --manual and --comp will open the McXtrace web

site page, the User Manual (this document) and the Component Manual, all requiring
BROWSER to be defined. Finally, the --help option will display the command help, as
usual.

See section 6.7 for more details about the McDoc usage and header format. To use
the mxdoc front-end, the program Perl should be available.

5.3.6. Translating and merging McXtrace result files (all text formats)

If you have been running a McXtrace simulation with a given text format output, but
finally plan to look at the results with an other plotter (e.g. you ran a simulation with
PGPLOT output and want to view it using Matlab), you may use

1 mcformat { f i l e | d i r } −d t a r g e t d i r −−format=TARGETFORMAT

to translate files into format TARGET FORMAT (e.g. NeXus). When given a directory,
the translation works recursively. The conversion works only for text files.

The --merge option may be used to merge similar files, e.g. obtained from grid
systems, just as if a longer run was achieved.

The --scan option may be used to reconstruct the scan data from a set of directo-
ries which vary by instrument parameters. For instance, you ran a scan, but finally
realized you should have prolonged it. Then simply simulate the missing bits, and ap-
ply mcformat -d scan_data --format=PGPLOT --scan step0 .. stepN. The result-
ing scan data is compatible with mcplot only when generating PGPLOT/McStas format.
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You may conjugate this option with the --merge in order to add/merge similar data
sets before re-building the scan.

The data files are analyzed by searching keywords inside data files (e.g. ’Source’ for
the source instrument description file). If some file names or component names match
these keywords (e.g. using a file ’Source.psd’), the extracted metadata information may
be wrong, even though the data itself will be correct.

5.4. Data formats - Analyzing and visualizing the simulation
results

To analyze simulation results, one uses the same tools as for analyzing experimental
data, i.e. programs such as IDL, Matlab and Scilab. The output files from simulations
are usually simple text files containing headers and data blocks. Each data file contains
informations about the simulation, the instrument, the parameters used, and of course
the signal, the estimated error on the signal, and the number of events used in each
bin. Additionally, all data files indicate their first (mean value) and second moment
(standard deviation) in the ’statistics’ field.

In order for the user to choose the data format, we recommend to set it using the
--format=FORMAT or alternatively via the MCXTRACE FORMAT environment vari-
able, which will also make the front-end programs able to import and plot data and
instrument consistently (see Section 5.2). The available format list is shown in Table 5.3.

Note that the x-ray event counts in detectors are typically not very meaningful except
as a way to measure the performance of the simulation. Use the simulated intensity
instead whenever analysing simulation data.

5.4.1. McXtrace and PGPLOT format

The McXtrace original format, which is equivalent to the PGPLOT format, is simply
columns of ASCII text that most programs should be able to read.

One-dimensional histogram monitors (energy, time-of-flight, energy) write one line for
each histogram bin. Each line contains a number identifying the bin (e.g. the energy)
followed by three numbers: the simulated intensity, an estimate of the statistical error
as explained in section 4.2.1, and the number of photon events for this bin.

Two-dimensional histogram monitors (position sensitive detectors) output M lines of
N numbers representing x-ray intensities, where M and N are the number of bins in the
two dimensions. The two-dimentional monitors also store the error estimates and event
counts as additional matrices.

Single-point monitors output the photon intensity, the estimated error, and the photon
event count as numbers on the terminal. (The results from a series of simulations may
be combined in a data file using the mxrun front-end as explained in section 5.3.2).

When using one- and two-dimensional monitors, the integrated intensities are written
to terminal as for the single-point monitor type, supplementing file output of the full one-
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or two-dimensional intensity distribution. By default, both one- and two-dimensional
monitor output starts with a header of comment lines, all beginning with the ‘#’ char-
acter. This header gives such information as the name of the instrument used in the
simulation, the values of any instrument parameters, the name of the monitor compo-
nent for this data file, etc. The headers may be disabled using the --data-only option
in case the file must be read by a program that cannot handle the headers.

In addition to the files written for each one- and two-dimensional monitor component,
another file (by default named mccode.sim) is also created. This file is in a special
McXtrace ASCII format. It contains all available information about the instrument
definition used for the simulation, the parameters and options used to run the simulation,
and the monitor components present in the instrument. It is read by the mxplot front-
end (see section 5.3.4). This file stores the results from single monitors, but by default
contains only pointers (in the form of file names) to data for one- and two-dimensional
monitors. By storing data in separate files, reading the data with programs that do not
know the special McXtrace file format is simplified. The --file option may be used to
store all data inside the mccode.sim file instead of in separate files.

5.4.2. HTML/VRML and XML formats

Both HTML and XML formats are available. The former may be viewed using any web
browser (Netscape/Mozilla/Firefox, Internet Explorer, Nautilus, Konqueror) - showing
data sets as VRML objects. XML data sets may be browsed for instance using Internet
Explorer (Windows and Mac OS) or Firefox, GXMLViewer and KXMLEditor (under
Linux).

The XML format is NeXus-like, but not fully compatible. However, McXtrace may
generate genuine NeXus/HDF format (see bellow).

5.4.3. NeXus format

The NeXus format [Nex] is a platform independent HDF binary data file. To have
McXtrace use it:

1. the HDF and NeXus libraries must have been installed

2. the McXtrace installation should be done with NeXus bindings, e.g. on Unix/Linux
systems configure --with-nexus; make; make install.

3. the compilation of instruments must be done with the -DUSE_NEXUS -lNeXus flags
(see Section 6.3.4). This is automated with the mxrun tool (Section 5.3.2).

All results are saved in a single file, containing ’groups’ of data. To view such files,
install and use HDFView (or alternatively HDFExplorer). This Java viewer can show
content of all detectors, including metadata (attributes). Basic detector images may also
be generated.
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5.5. Using computer Grids and Clusters

Parallelizing a computation is in general advantageous when dependencies between parts
of computations are not too strong. The situation of McXtrace is ideal since each photon
ray can be simulated without interfering with other simulated photon rays. Therefore
each photon ray can be simulated independently on a set of computers.

When computing N photon rays with p computers, each computer will simulate N
p

photons. As a result there will be p · Np = N photons simulated. As a result, McXtrace
generates two kinds of data sets:

• intensity measurements, internally represented by three values (p0, p1, p2) where
p0, p1, p2 are additive. Therefore the final value of p0 is the sum of all local value
of p0 computed on each node. The same rule applies for p1 and p2. The evaluation
of the intensity errors σ is performed using the final p0, p1, and p2 arrays (see
section 4.2.1).

• event lists: the merge of events is done by concatenation

McXtrace provides three methods in order to distribute computations on many com-
puters.

• when using a set of nodes (grid, cluster or multi-cores), it is possible to distribute
simulations on a list of computers and multi-core machines (see section 5.5.1).
Results are automatically merged after completion. This method is very efficient,
and only requires a SSH server to be installed/configured on slave machines. In
order to use an heterogeneous system, a C compiler should be optionally installed
on slave machines.

• when using an homogeneous computer cluster, each simulation (including scan
steps) may be computed in parallel using MPI. We recommend this method on
clusters (see section 5.5.2).

Last but not least, you may run simulations manually on a number of machines.
Once the distributed simulation have been completed, you may merge their results using
mxformat (see section 5.3.6) in order to obtain a set of files just as if it had been executed
on a single machine.

All of these methods can be used, when available, from mxgui.

5.5.1. Distribute mxrun simulations on grids, multi-cores and clusters (SSH
grid)

This method distributes simulations on a set of machines using ssh connections, using
a command such as mxrun --grid=4 .... Each of the scan steps is split and executed
on distant slave machines, sending the executable with scp, executing single simulations,
and then retrieving individual results on the master machine. These are then merged
using mxformat.

The mxrun script has been adapted to use transparently SSH grids. The syntax is:
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• --grid=<number>: tells mxrun to use the grid over <number> nodes.

• --machines=<file>: defines a text file where the nodes which are to be used for
parallel computation are listed; by default, mxrun will look at $HOME/.mcxtrace-hosts
and MCXTRACE/tools/perl/mcxtrace-hosts. When used on a single SMP ma-
chine (multi-core/cpu), this option may be omitted.

• --force-compile: this option is required on heterogeneous systems. The C code
is sent to all slaves and simulation is compiled on each node before starting com-
putation. The default is to send directly the executatble from the master node,
which only works on homogeneous systems. computation.

This method shows similar efficiency as MPI, but without MPI installation. It is
especially suited on multi-core machines, but may also be used on any set of distant
machines (grids), as well as clusters. For Windows master machines, we recommend the
installation of the PuTTY SSH client. The overhead is proportional to the number of
nodes and the amount of data files to transfer per simulation. It is usually larger than
the pure MPI method. We thus recommend to launch long runs on fewer nodes rather
than many short runs on many nodes.

Requirements and limitations (SSH grids)

1. A master machine with an SSH client, and McXtrace installation.

2. A set of machines (homogeneous or heterogeneous) with SSH servers.

3. On heterogeneous grids, a C compiler must also be installed on all slave nodes.

4. ssh access from the master node (where McXtrace is installed) to the slaves
through e.g. DSA keys without a password. These keys should be generated using
the command ssh-keygen. Run e.g. ssh-keygen -t dsa on master node, enter
no passphrase and add resulting .ssh/id dsa.pub to .ssh/authorized keys on
all the slave nodes. The key generation and registering mechanism may be done
automatically for the local machine from the Help menu/Install DSA key item of
mxgui.

5. The machine names listed in the file .mcxtrace-hosts in your home directory or
in the MCXTRACE/tools/perl/mcxtrace-hosts on the master node, one node per
line. The --machines=<file> option enables to specify the hosts file to use. If
it does not exist, only the current machine will be used (for multi-processor/core
machines).

6. Without ssh keys, passwords will be prompted many times. To avoid this, we
recommend to use only the local machine (for multi-cores/cpu), i.e. do not use a
machine hosts file.
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7. If your simulation/instrument requires data files (Powders, Sqw, source descrip-
tion, ...), these must be copied at the same level as the instrument definition. They
are sent to all slave nodes before starting each computation. Take care to limit the
requird data file volume as much as possible in order to avoid large data transfers.

8. Interupting or sending Signals may fail during computations. However, simulation
scans can be interrupted as soon as the on-going computation step ends.

9. With heterogeneous systems, we recommend to use the mxrun --force-compile

command rather than mxgui, which may skip the required simulation compilation
on slaves.

5.5.2. Parallel computing (MPI)

The MPI support requires that an implementaiton of the MPI-libraries is intalled on
the system. We have generally find OpenMPI to be the most user-friendly, but other
implementations (such as MPICH and LAM-MPI) work equally well. We have found no
significant run-time differences. Usually MPI also requires properly setup ssh connec-
tions and keys as indicated in the ssh grid system (Section 5.5.1).

There are 3 methods for using MPI parallellization:

• Basic usage requires to compile and run the simulation by hand. See section 5.5.2
for details.

• A much simpler way is to use mxrun -c --mpi=NB_CPU .... (See section 5.5.2)

• The mxgui interface supports MPI from within the Run Dialog.

The MPI support is especially suited for clusters. As an alternative, the SSH grid
presented above (section 5.5.1) is very flexible and requires less configuration.

Requirements and limitations (MPI)

To use MPI you will need

1. A master machine with an SSH client/server, and McXtrace installation.

2. A set of unix machines of the same architecture (binary compatible) with SSH
servers.

3. ssh access from the master node (where McXtrace is installed) to the slaves
through e.g. DSA keys without a password. These keys should be generated using
the command ssh-keygen. Run e.g. ssh-keygen -t dsa on master node, enter
no passphrase and add resulting .ssh/id dsa.pub to .ssh/authorized keys on
all the slave nodes. The key generation and registering mechanism may be done
automatically for the local machine from the Help menu/Install DSA key item of
mxgui.
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4. The machine names listed in the file .mcxtrace-hosts in your home directory or
in the MCXTRACE/tools/perl/mcxtrace-hosts on the master node, one node per
line. The --machines=<file> option enables to specify the hosts file to use. If
it does not exist, only the current machine will be used (for multi-processor/core
machines).

5. Without ssh keys, passwords will be prompted many times. To avoid this, we
recommend to use only the local machine (for multi-cores/cpu), i.e. do not use a
machine hosts file.

6. Signals are not supported while simulating with MPI (since asynchroneous events
cannot be easily transmitted to all nodes). This means it is not possible to cancel
an on-going computation. However, simulation scans can be interrupted as soon
as the on-going computation step ends.

7. MPI must be correctly configured: if using ssh, you have to set ssh keys to avoid
use of passwords; if using rsh, you have to set a .rhosts file. On non-local
accounts, this procedure may fail and ssh always require passwords.

MPI Basic usage

To enable parallel computation, compile McXtrace output C-source file with mpicc with
the flag -DUSE_MPI and run it using the wrapper of your MPI implementation (e.g.
mpirun): Below is a shell script to this effect:

1 #!/ bin / sh
2 # genera te a C−source f i l e [ sim . c ]
3 mcxtrace sim . i n s t r
4 # genera te an e x e cu t a b l e wi th MPI suppor t [ sim .mpi ]
5 mpicc −DUSE MPI −o sim . mpi sim . c
6
7 # execu te wi th p a r a l l e l p roce s s ing over <N> computers
8 # here you have to l i s t the computers you want to use
9 # in a f i l e [ machines . l i s t ] ( us ing mpich implementat ion )

10 # ( r e f e r to MPI documentation f o r a complete d e s c r i p t i o n )
11 mpirun −mach in e f i l e machines . l i s t −n <N> \
12 . / sim . mpi <instrument parameters>

If you don’t want to spread the simulation, run it as usual :

./sim.mpi <instrument parameters>

mxrun script with MPI support

The mxrun script has been adapted to use MPI. Two new options have been added:

• --mpi=<number>: tells mxrun to use MPI, and to spread the simulation over
<number> nodes
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• --machines=<file>: defines a text file where the nodes which are to be used for
parallel computation are listed; by default, mxrun will look at $HOME/.mcxtrace-hosts
and MCXTRACE/tools/perl/mcxtrace-hosts. When used on a single SMP ma-
chine (multi-core/cpu), this option may be omitted.

When available, the MPI option will show up in the mxgui Run dialog. Specify the
number of nodes required.

Suppose you have four machines named node1 to node4. A typical machine list file,
machines.list looks like :

node1

node2

node3

node4

You can then spread a simulation sim.instr using mxrun :

mxrun -c --mpi=4 --machines=machines.list \

sim.instr <instrument parameters>

Warning: when using mxrun with MPI, be sure to recompile your simulation with MPI
support (see -c flag of mxrun): a simulation compiled without MPI support cannot be
used with MPI, whereas a simulation compiled with MPI support can be used without
MPI.

5.5.3. McXtrace/MPI Performance

Theoretically, a computation which lasts T seconds on a single computer, should last T
p

seconds when it is distributed over p computers. In practice, there will be overhead time
due to the split and merge operations.

• the split is immediate: constant time cost O(1)

• the merge is at worst linear against the number of computers:

– linear time cost : O(p) when saving an event list

– logarithmic time cost: O(log p) when not saving an event list

The efficiency of McXtrace using MPI has been tested on large clusters, up to 500
nodes. The computation time decreases in the same proportion as the number of nodes,
showing an ideal efficiency. However, a small overhead may appear depending on the
cluster internal network load, which may be estimated at most of about 10-20 s. This
overhead comes from the spread and the fusion of the computations. For instance,
spreading a computation implies often an rsh or and ssh session to be opened on every
node. To reach the best efficiency, the computation time should not be lower than 30
seconds, or the overhead time may become significant compared to total time.
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Figure 5.8.: McXtrace MPI execution time as a function of computing nodes, with tem-
plateTOF instrument and 1e8 initial photon events. Tests performed on
Lonestar@TACC (US Teragrid, 2008).

5.5.4. MPI and Grid Bugs and limitations

• Some header of output files might contain minor errors.

• The computation split does not take into account the speed or the load of nodes:
the overall time of a distributed computation is forced by the slowest node; for
optimal performance, the “cluster” should be homogeneous.

• Interacting with a running simulation (USR1 and USR2 signals) is disabled with
MPI.
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6. The McXtrace kernel and meta-language

Beamline definitions are written in a special McXtrace meta-language which is translated
automatically by the McXtrace compiler into a C program which is in turn compiled to
an executable that performs the simulation. The meta-language is custom-designed for
x-ray scattering and serves two main purposes: (i) to specify the interaction of a single
x-ray with a single optical component, and (ii) to build a simulation by constructing a
complete beamline from individual components.

For maximum flexibility, efficiency and portability, the meta-language is based on C.
Instrument geometry, propagation of x-rays between the different components, parame-
ters, data input/output etc. is handled in the meta-language and by the McXtrace com-
piler. Complex calculations are written in C embedded in the meta-language description
of the components. However, it is possible to set up an instrument from existing com-
ponents and run a simulation without writing a single line of C code, working entirely
in the meta-language.

Apart from the meta-language, McXtrace also includes a number of C library functions
and definitions that are useful for x-ray tracing simulations. The definitions available
for component developers are listed in appendix B. The list includes functions for

• Computing the intersection between a photon flight-path and various objects (such
as planes, cylinders, boxes and spheres).

• Functions for generating random numbers with various distributions.

• Functions for reading or writing informations from/to data files.

• Convenient conversion factors between relevant units, etc.

The McXtrace meta-language was designed to be readable, with a verbose syntax
and explicit mentioning of otherwise implicit information. The recommended way to
get started with the meta-language is to start by looking at the examples supplied with
McXtrace, modifying them as necessary for the application at hand.

6.1. Notational conventions

Simulations generated by McXtrace use a semi-classical description of the x-rays to com-
pute the x-ray trajectory through the instrument and its interaction with the different
components.

An instrument consists of a list of components through which the x-ray ray passes one
after the other. The order of components is thus significant since McXtrace does not
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Figure 6.1.: conventions for the orientations of the axis in simulations.

automatically check which component is the next to interact with the x-ray at a given
point in the simulation. Note that in case of a negative propagation length from one
component to the next, the x-ray is by default absorbed as this is often an indication of
unphysical conditions. If a large part of the simulated rays are absorbed on account of
this a warning is issued, as this is often caused by a misplaced component.

The instrument is given a global, absolute coordinate system. In addition, every
component in the instrument has its own local coordinate system that can be given any
desired position and orientation (though the position and orientation must remain fixed
for the duration of a single simulation). By convention, the z axis points in the direction
of the beam, the x axis is perpendicular to the beam in the horizontal plane pointing
left as seen from the source, and the y axis points upwards (see fig. 6.1). Nothing in the
McXtrace metalanguage enforces this convention, but if every component used different
conventions the user would be faced with a severe headache! It is therefore necessary
that this convention is followed by users implementing new components.

In the instrument definitions, units of length (e.g. component positions) are given in
meters and units of angles (e.g. rotations) are given in degrees. The state of the x-ray

is given by its position (x, y, z) in m, its wavevector (kx, ky, kz) in Å
−1

, the time in s,,
the phase φ in rad, and a polarisation vector (Ex, Ey, Ez), and finally the x-ray weight
p in photons /s as described in chapter 4.

6.2. Syntactical conventions

Comments follow the normal C syntax “/* ... */”. C++ style comments “// ...”
may also be used.

Keywords are not case-sensitive, for example “DEFINE”, “define”, and “dEfInE” are
all equivalent. However, by convention we always write keywords in uppercase to distin-
guish them from identifiers and C language keywords. In contrast, McXtrace identifiers
(names), like C identifiers and keywords, are case sensitive, another good reason to use a
consistent case convention for keywords. All McXtrace keywords are reserved, and thus
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should not be used as C variable names. The list of these reserved keywords is shown in
table 6.1.

It is possible, and usual, to split the input instrument definition across several different
files. For example, if a component is not explicitly defined in the instrument, McXtrace
will search for a file containing the component definition in the standard component
library (as well as in the current directory and any user-specified search directories, see
section 5.1.2). It is also possible to explicitly include another file using a line of the form

%include "file"

Beware of possible confusion with the C language “#include” statement, especially when
it is used in C code embedded within the McXtrace meta-language. Files referenced
with “%include” are read when the instrument is translated into C by the McXtrace
compiler, and must contain valid McXtrace meta-language input (and possibly C code).
Files referenced with “#include” are read when the C compiler generates an executable
from the generated C code, and must contain valid C.

Embedded C code is used in several instances in the McXtrace meta-language. Such
code is copied by the McXtrace compiler into the generated simulation C program.
Embedded C code is written by putting it between the special symbols %{ and %}, as
follows:

%{

. . . Embedded C code . . .
%}

The “%{” and “%}” must appear on a line by themselves (do not add comments after).
Additionally, if a “%include” statement is found within an embedded C code block,
the specified file will be included from the ’share’ directory of the standard component
library (or from the current directory and any user-specified search directories) as a C
library, just like the usual “#include” but only once. For instance, if many components
require to read data from a file, they may all ask for “%include "read_table-lib"”
without duplicating the code of this library. If the file has no extension, both .h and
.c files will be searched and included, otherwise, only the specified file will be im-
ported. The McXtrace’run-time’ shared library is included by default (equivalent to
“%include "mcxtrace-r"” in the DECLARE section). For an example of %include, see
the optics/Lens simple.comp component. See also section 6.4.2 for insertion of full in-
struments in instruments (instrument catenation).

If the instrument description compilation fails, check that the keywords syntax is
correct, that no semi-colon ; sign is missing (e.g. in C blocks and after an ABSORB
macro), and there are no name conflicts between instrument and component instances
variables.
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Keyword Scope Meaning

ABSOLUTE I Indicates that the AT and ROTATED keywords are in the
absolute coordinate system.

AT I Indicates the position of a component in an instrument defi-
nition.

COPY I,C copy/duplicate an instance or a component definition.
DECLARE I,C Declares C internal variables.
DEFINE I,C Starts an INSTRUMENT or COMPONENT definition.
DEFINITION C Defines component parameters that are constants (#define).
END I,C Ends the instrument or component definition.
SPLIT I Enhance incoming statistics by event repetition.
EXTEND I Extends a component TRACE section (plug-in).
FINALLY I,C Embeds C code to execute when simulation ends.
GROUP I Defines an exclusive group of components.
%include I,C Imports an instrument part, a component or a piece of C code

(when within embedded C).
JUMP I Iterative (loops) and conditional jumps.
INITIALIZE I,C Embeds C code to be executed when starting.
ITERATE I Defines iteration counter for JUMP.
MCDISPLAY C Embeds C code to display component geometry.
NEXUS I Defines NeXus output type (4,5,XML,compression).
OUTPUT C Defines internal variables to be public and protected symbols

(usually all global variables and functions of DECLARE).
PARAMETERS C Defines a class of component parameter (DEFINITION, SET-

TING,STATE).
PREVIOUS C Refers to a previous component position/orientation.
RELATIVE I Indicates that the AT and ROTATED keywords are relative

to an other component.
ROTATED I Indicates the orientation of a component in an instrument

definition.
SAVE I,C Embedded C code to execute when saving data.
SETTING C Defines component parameters that are variables.
SHARE C Declares global functions and variables to be shared.
STATE C Defines x-ray state coordinates.
TRACE I,C Defines the instrument as a the component sequence.
WHEN I Condition for component activation and JUMP.

Table 6.1.: Reserved McXtrace keywords. Scope is ’I’ for instrument and ’C’ for compo-
nent definitions.
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6.3. Writing instrument definitions

The purpose of the instrument definition file is to specify a sequence of components,
along with their position and parameters, which together make up a beamline. Each
component is given its own local coordinate system, the position and orientation of
which may be specified by its translation and rotation relative to another component.
Examples of instrument definitions can be found in the example directory of your McX-
trace installation. Further examples may be found as they are built on the McXtrace
web-page [Mcx].

As a summary, the usual grammar for instrument descriptions is

DEFINE INSTRUMENT name(parameters)

DECLARE C_code

INITIALIZE C_code {NEXUS}

TRACE components

{FINALLY C_code}

END

6.3.1. The instrument definition head

DEFINE INSTRUMENT name (a1, a2, . . .)

This marks the beginning of the definition. It also gives the name of the instrument and
the list of instrument parameters. Instrument parameters describe the configuration of
the instrument, and usually correspond to setting parameters of the components, see
section 6.5. A motor position is a typical example of an instrument parameter. The
input parameters of the instrument constitute the input that the user (or possibly a
front-end program) must supply when the generated simulation is started.

By default, the parameters will be floating point numbers, and will have the C type
double (double precision floating point). The type of each parameter may optionally
be declared to be int for the C integer type or char * for the C string type. The
name string may be used as a synonym for char *, and floating point parameters
may be explicitly declared using the name double. The following example illustrates all
possibilities:

DEFINE INSTRUMENT test(d1, double d2, int i, char *s1, string s2)

Here d1 and d2 will be floating point parameters of C type double, i will be an integer
parameter of C type int, and s1 and s2 will be string parameters of C type char *.
The parameters of an instrument may be given default values. Parameters with default
values are called optional parameters, and need not be given an explicit value when
the instrument simulation is executed. When executed without any parameter value in
the command line (see section 5.2), the instrument asks for all parameter values, but
pressing the Return key selects the default value (if any). When used with at least one
parameter value in the command line, all non specified parameters will have their value
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set to the default one (if any). A parameter is given a default value using the syntax
“param= value”. For example

DEFINE INSTRUMENT test(d1= 1, string s2="hello")

Here d1 and d2 are optional parameters and if no value are given explicitly, “1” and
“hello” will be used.

Optional parameters can greatly increase the convenience for users of instruments for
which some parameters are seldom changed or of unclear significance to the user. Also,
if all instrument parameters have default values, then the simple command mxdisplay

test.instr will show the instrument view without requesting any other input, which is
usually a good starting point to study the instrument design.

6.3.2. The DECLARE section

DECLARE

%{

. . . C declarations of global variables etc. . . .
%}

This gives C declarations that may be referred to in the rest of the instrument def-
inition. A typical use is to declare global variables or small functions that are used
elsewhere in the instrument. The %include ’’file’’ keyword may be used to im-
port a specific component definition or a part of an instrument. Variables defined
here are global, and may conflict with internal McXtrace variables, particularly sym-
bols like x,y,z,Ex,Ey,Ez,kx,ky,kz,t,phi and generally all names starting with mc

nad mx should be avoided. If you can not compile the instrument, this may be the
reason. The DECLARE section is optional.

6.3.3. The INITIALIZE section

INITIALIZE

%{

. . . C initializations. . . .
%}

This section contains code that is executed once when the simulation starts. This section
is optional. Instrument setting parameters may be modified in this section (e.g. doing
tests or automatic settings).

6.3.4. The NEXUS extension

To use the NeXus format [Nex] the simulation must be linked with additional libraries
(HDF and NeXus) which must have been pre-installed. Preferrably, McXtrace should
have been installed with the ./configure --with-nexus on Unix/Linux systems. To
activate the NeXus output, the instrument must be compiled with the flags -DUSE_NEXUS -lNeXus.
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The default NeXus format is NeXus 5 with compression. However, that format may
be changed with the optional keyword NEXUS to follow the INITIALIZE section, namely:

INITIALIZE

%{

. . . C initializations. . . .
%} NEXUS {"4"|"5"|"XML"|"compress"|"zip"}

It is possible to set the type of NeXus file with a string argument, containing words
”4”, ”5” or ”XML”. Optionally, if the string also contains the compress or zip word, the
NeXus file will use compression for Data Sets. We recommend the syntax NEXUS "5 compress"

which is the default.
You may choose the name of the output file with the -f filename option from the

instrument executable or mxrun (see Sections 5.2, 5.3.2 and Table 5.2).
Then, the output format is chosen as usual with the --format=NeXus option when

launching the simulation. All output files are stored in the output filename, as well
as the instrument description itself. Other formats are still available. When run on
a distributed system (e.g. MPI), detectors are gathered, but list of events (see e.g.
component Virtual output) are stored as one data set per node.

6.3.5. The TRACE section

As a summary, the usual grammar for component instances within the instrument
TRACE section is

COMPONENT name = comp(parameters)

AT (...) [RELATIVE [reference|PREVIOUS] | ABSOLUTE]

{ROTATED {RELATIVE [reference|PREVIOUS] | ABSOLUTE} }

The TRACE keyword starts a section giving the list of components that constitute the
instrument. Components are declared like this:

COMPONENT name = comp(p1 = e1, p2 = e2, . . .)

This declares a component named name that is an instance of the component definition
named comp. The parameter list gives the setting and definition parameters for the
component. The expressions e1, e2, . . . define the values of the parameters. For setting
parameters arbitrary ANSI-C expressions may be used, while for definition parameters
only constant numbers, strings, names of instrument parameters, or names of C iden-
tifiers are allowed (see section 6.5.1 for details of the difference between definition and
setting parameters). To assign the value of a general expression to a definition parame-
ter, it is necessary to declare a variable in the DECLARE section, assign the value to the
variable in the INITIALIZE section, and use the variable as the value for the parameter.

The McXtrace program takes care to rename parameters appropriately in the output
so that no conflicts occur between different component definitions or between compo-
nent and instrument definitions. It is thus possible (and common) to use a component
definition multiple times in an instrument description.
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Be aware of the C variable type conversions when setting numerical parameter values,
as in p1=12/1000. In this example, the parameter p1 will be set to 0 as the division of
the two integers is indeed 0. To avoid that, use explicitely floating type numbers as in
p1=12.0/1000.

The McXtrace compiler will automatically search for a file containing a definition of the
component if it has not been declared previously. The definition is searched for in a file
called “name.comp”. See section 5.1.2 for details on which directories are searched. This
facility is often used to refer to existing component definitions in standard component
libraries. It is also possible to write component definitions in the main file before the
instrument definitions, or to explicitly read definitions from other files using %include

(not within embedded C blocks).

The physical position of a component is specified using an AT modifier following the
component declaration:

AT (x, y, z) RELATIVE name

This places the component at position (x, y, z) in the coordinate system of the previ-
ously declared component name. Placement may also be absolute (not relative to any
component) by writing

AT (x, y, z) ABSOLUTE

Any C expression may be used for x, y, and z. The AT modifier is required. Rotation is
achieved similarly by writing

ROTATED (φx, φy, φz) RELATIVE name

This will result in a coordinate system that is rotated first the angle φx (in degrees)
around the x axis, then φy around the y axis, and finally φz around the z axis. Rotation
may also be specified using ABSOLUTE rather than RELATIVE. If no rotation is specified,
the default is (0, 0, 0) using the same relative or absolute specification used in the AT

modifier. We recommend to apply all rotations of an instrument description on Arm
class components only, acting as goniometers, and position the optics on top of these.
This usually makes it much easier to orient pieces of the beamline, and avoid positioning
errors.

The position of a component is actually the origin of its local coordinate system.
Usually, this is used as the input window position (e.g. for guide-like components), or
the center position for cylindrical/spherical components.

The PREVIOUS keyword is a generic name to refer to the previous component in the sim-
ulation. Moreover, the PREVIOUS(n) keyword will refer to the n-th previous component,
starting from the current component, so that PREVIOUS is equivalent to PREVIOUS(1).
This keyword should be used after the RELATIVE keyword, but not for the first component
instance of the instrument description.

AT (x, y, z) RELATIVE PREVIOUS ROTATED (φx, φy, φz) RELATIVE PREVIOUS(2)
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Invalid PREVIOUS references will be assumed to be absolute placement.

The order and position of components in the TRACE section does not allow components
to overlap, except for particular cases (see the GROUP keyword below). Indeed, many
components of the McXtrace library start by propagating the x-ray event to the begining
of the component itself. If the corresponding propagation length is found to be negative
(i.e. the x-ray is already after or aside the component, and has thus passed the ’active’
position), the x-ray event is ABSORBed, resulting in a zero intensity and event counts
after a given position. The number of such removed x-rays is indicated at the end of
the simulation. Getting such warning messages may be an indication that either some
components overlap, or some x-rays are getting outside of the simulation, for instance
this usually happens after a monochromator, as the non-reflected beam is indeed lost.
A special warning appears when no x-ray has reached some part of the simulation. This
is usually the sign of either overlapping components or a very low intensity.

For experienced users, we recommend as well the usage of the WHEN and EXTEND key-
words, as well as other syntax extensions presented in section 6.4.2 below.

6.3.6. The SAVE section

SAVE

%{

. . . C code to execute each time a temporary save is required . . .
%}

This gives code that will be executed when the simulation is requested to save data, for
instance when receiving a USR2 signal (on Unix systems), or using the Progress_bar

component with intermediate savings. It is also executed when the simulation ends.
This section is optional.

6.3.7. The FINALLY section

FINALLY

%{

. . . C code to execute at end of simulation . . .
%}

This gives code that will be executed when the simulation has ended. When existing,
the SAVE section is first executed. The FINALLY section is optional. A simulation may
be requested to end before all x-rays have been traced when recieving a TERM or INT
signal (on Unix systems), or with Control-C, causing code in FINALLY to be evaluated.

6.3.8. The end of the instrument definition

The end of the instrument definition must be explicitly marked using the keyword

END
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6.4. Writing instrument definitions - complex arrangements
and syntax

In this section, we describe some additional ways to build instruments using groups,
code extension, conditions, loops and duplication of components.

As a summary, the nearly complete grammar definition for component instances within
the instrument TRACE section is:

{SPLIT} COMPONENT name = comp(parameters) {WHEN condition}

AT (...) [RELATIVE [reference|PREVIOUS] | ABSOLUTE]

{ROTATED {RELATIVE [reference|PREVIOUS] | ABSOLUTE} }

{GROUP group_name}

{EXTEND C_code}

{JUMP [reference|PREVIOUS|MYSELF|NEXT] [ITERATE number_of_times | WHEN condition] }

6.4.1. Embedding instruments in instruments TRACE

The %include insertion mechanism may be used within the TRACE section, in order
to concatenate instruments. This way, each DECLARE, INITIALIZE, SAVE, and FI-
NALLY C blocks, as well as instrument parameters from each part are catenated. The
TRACE section is made of inserted COMPONENTS from each part. In principle, it
then possible to write an instrument as:

DEFINE catenated()

TRACE

%include "part1.instr"

%include "part2.instr"

END

where each inserted instrument is a valid full instrument. In order to avoid some com-
ponents to be duplicated - e.g. Sources from each part - a special syntax in the TRACE
section

INSTRUMENT COMPONENT a=...

marks the component a as removable when inserted. In principle, inserted instruments
may themselves use %include.

6.4.2. Component extensions - EXTEND

It is sometimes desirable to slightly modify an existing component of the McXtrace li-
brary. One would usually make a copy of the component, and extend the code of its
TRACE section. McXtrace provides an easy way to change the behaviour of existing com-
ponents in an instrument definition without duplicating files, using the EXTEND modifier
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EXTEND

%{

. . . C code executed after the component TRACE section . . .
%}

The embedded C code is appended to the component TRACE section, and all its internal
variables (as well as all the DECLARE instrument variables, except instrument parameters)
may be used. To use instrument parameters, you should copy them into global variables
in the DECLARE instrument section, and refer to these latter. This component decla-
ration modifier is of course optional. You will find usage examples in the Component
manual[BK+12].

6.4.3. Mutually exclusive components in parallell - GROUP

In some configurations it is necessary to position one or more groups of components,
nested, in parallel, or overlapping. One example is a multiple crystal monochromator.
One would then like the x-ray to interact with one of the components of the group and
then continue.

In order to handle such arrangements without removing x-rays, groups are defined by
the GROUP modifier (after the AT-ROTATED positioning):

GROUP name

to all involved component declarations. All components of the same named group are
tested one after the other, until one of them interacts (uses the SCATTER macro). The
selected component acts on the x-ray, and the rest of the group is skipped. Such groups
are thus exclusive (only one of the elements is active).

Within a GROUP, all EXTEND sections of the group are executed. In order to discriminate
components that are active from those that are skipped, one may use the SCATTERED
flag, which is set to zero when entering each component or group, and incremented when
the x-ray is SCATTERed, as in the following example

COMPONENT name0 = comp(p1 = e1, p2 = e2, . . .)
AT (0, 0, 0) ABSOLUTE

COMPONENT name1 = comp(. . .) AT (...) ROTATED (...)
GROUP GroupName EXTEND

%{

if (SCATTERED) printf("I scatter");

else printf("I do not scatter");

%}

COMPONENT name2 = comp(. . .) AT (...) ROTATED (...)
GROUP GroupName

Components name1 and name2 are at the same position. If the first one intercepts the x-
ray (and has a SCATTER within its TRACE section), the SCATTERED variable becomes
true, the code extension will result in printing ”I scatter”, and the second component
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will be skipped. Thus, we recommend to make use of the SCATTER keyword each time
a component ’uses’ the x-ray (scatters, detects, . . . ) within component definitions (see
section 6.5). Also, the components to be grouped should be consecutive in the TRACE
section of the instrument, and the GROUPed section should not contain components
which are not part of the group.

Note that a GROUP construct is not applicable to a situation where an x-ray which has
interacted (SCATTERed) with one component in the group, may interact with another.
In this case a more complex arrangement is needed. See [Wil+11] for a description of
how to do this in McStas. This is approach is directly applicable in McXtrace without
modification.

Combining EXTEND, GROUP and WHEN can result in unexpected behaviour. Please
read the related warning at the end of section 6.4.5.

6.4.4. Duplication of component instances - COPY

Often, one has a set of similar component instances in an instrument. These could be e.g.
a set of identical monochromator blades, or a set of detectors. Together with JUMPs
(see below), there is a way to copy a component instance, duplicating a parameter
set, as well as any EXTEND, GROUP, JUMP and WHEN keyword. Position (AT)
and rotation (ROTATED) specification must be explicitely entered in order to avoid
component overlap.

The syntax for instance copy is

COMPONENT name = COPY(instance name)

where instance name is the name of a preceeding component instance in the instrument.
It may be ’PREVIOUS’ as well.

If you would like to change only some of the parameters in the instance copy, you may
write, e.g.:

COMPONENT name = COPY(instance name)(par1=0, par2=1)

which will override the original instance parameter values. In case EXTEND, GROUP,
JUMP and WHEN keywords are defined for the copied instance, these will override the
settings from the copied instance.

In the case where there are many duplicated components all originating from the same
instance, there is a mechanism for automating copied instance names:

COMPONENT COPY(root name) = COPY(instance name)

will append a unique number to root name, to avoid name conflicts. As a side effect,
referring to this component instance (for e.g. further positioning) is not straight forward
as the name is determined by McXtrace and does not depend completely on the user’s
choice, even though the PREVIOUS keyword may still be used. We thus recommend to
use this naming mechanism only for components which should not be refered to in the
instrument.
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This automatic naming may be used anywhere in the TRACE section of the instru-
ment, so that all components which do not need further referral may be labeled as
COPY(Origin).

As an example, we show how to have a set of three equivalent pinholes (Slits). Only the
first instance of the Slit component is defined explicitly, whereas following instances are
copies of that definition. The instance names of Slit components are set automatically.

COMPONENT S_in = Arm() AT (...)

COMPONENT S_1 = Slit(radius=0.1)

AT (0,0,0) RELATIVE PREVIOUS

COMPONENT COPY(S_1) = COPY(S_1)

AT (0,0,d) RELATIVE PREVIOUS

COMPONENT COPY(S_1) = COPY(S_1)

AT (0,0,d) RELATIVE PREVIOUS

...

COMPONENT S_Out = Arm() AT (0,0,d) RELATIVE PREVIOUS

6.4.5. Conditional components - WHEN

One of the most useful features of the extended McXtrace syntax is the conditional
WHEN modifier. This optional keyword comes before the AT-ROTATED positioning. It
basically enables the component only when a given condition is true (non null).

COMPONENT name = comp(p1 = e1, p2 = e2, . . .) WHEN (condition)

The condition has the same scope as the EXTEND modifier, i.e. may use component
internal variables as well as all the DECLARE instrument variables.

Usage examples could be to have specific monitors only sensitive to selected processes,
or to have components which are only present under given circumstances (e.g. removable
filter or radial collimator), or to select a sample among a set of choices.

In the following example, an EXTEND block sets a condition when a scattering event
is encoutered, and the following monitor is then activated.

COMPONENT Sample = V_sample(...) AT ...

EXTEND

%{

if (SCATTERED) flag=1; else flag=0;

%}

COMPONENT MyMon = Monitor(...) WHEN (flag==1)

AT ...
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The WHEN keyword only applies to the TRACE section and related EXTEND blocks
of instruments/components. Other sections (INITIALIZE, SAVE, MCDISPLAY, FI-
NALLY) are executed independently of the condition. As a side effect, the 3D view of
the instrument (mxdisplay) will show all components as if all conditions were true.

A usage example of the WHEN keyword can be found in the
X-ray site/ESRF/ESRF_ID11 instrument from the mxgui, where the source model may
be chosen by an external parameter.

The WHEN keyword is compatible with GROUP, and thus may be used to activate/deac-
tivate members in a GROUP just like non-grouped components. Combining WHEN, EXTEND
and GROUP can result in unexpected behaviour, please use them with caution! As an
example, let a GROUP of components all have the same WHEN condition. If the condition
is false, none of the elements SCATTER, meaning that all x-rays will be ABSORBed. As
a solution to this problem, we propose to include an EXTENDed Arm component in the
GROUP, but with the opposite WHEN condition and a SCATTER keyword in the EXTEND

section. This means that when none of the other GROUP elements are present, the Arm
will be present and SCATTER.

6.4.6. Component loops and non sequential propagation - JUMP

There are situations in which one would like to repeat a given component many times, or
under a given condition. The JUMP modifier is meant for that and should be mentioned
after the positioning, GROUP and EXTEND. This breaks the sequential propagation
along components in the instrument description. There may be more than one JUMP
per component instance.

The jump may depend on a condition:

COMPONENT name = comp(p1 = e1, p2 = e2, . . .) AT (...) JUMP reference
WHEN condition

in which case the instrument TRACE will jump to the reference when condition is true.
The reference may be an instance name, as well as PREVIOUS, PREVIOUS(n),

MYSELF, NEXT, and NEXT(n), where n is the index gap to the target either backward
(PREVIOUS) or forward (NEXT), so that PREVIOUS(1) is PREVIOUS and NEXT(1)
is NEXT. MYSELF means that the component will be iterated as long as the condition
is true. This may be a way to handle multiple scattering, if the component has been
designed for that.

The jump arrives directly inside the target component, in the local coordinate system
(i.e. without applying the AT and ROTATED keywords). In order to better control the
target positions, it is required that, except for looping MYSELF, the target component
type should be an Arm. Similarly to the WHEN modifier (see section 6.4.5), JUMP only
applies within the TRACE section of the instrument definition. Other sections (INI-
TIALIZE, SAVE, MCDISPLAY, FINALLY) are exectuted independently of the jump.
As a side effect, the 3D view of the instrument mxdisplay will show components as if
there was no jump. This means that in the following example, the very long mirror 3D
view only shows a single mirror element.
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It is not recommended to use the JUMP inside GROUPs, as the JUMP condition/counter
applies to the component instance within its group.

We would like to emphasize the potential errors originating from such jumps. Indeed,
imbricating many jumps may lead to situations were it is difficult to understand the flow
of the simulation. We thus recommend the usage of JUMPs only for experienced and
cautious users.

6.4.7. Enhancing statistics reaching components - SPLIT

The following method applies when the incoming x-ray event distribution is considered
to be representative of the real beam, but x-rays are lost in the course of propagation
(with low efficiency processes, absorption, etc). Then, one may think that it’s a pity to
have so few events reaching the ’interesting’ part of the beamline (usually close to the
end of the instrument description). If some components make extensive use of random
numbers (MC choices), they shuffle this way the distributions, so that identical incoming
events will not produce the same outgoing event. In this case, you may want to use a
technique known as stratified sampling (see chapter 4) which in McXtrace is implemented
through the SPLIT keyword with the syntax

SPLIT r COMPONENT name = comp(. . .)

where the optional number r specifies the number of repetitions for each event. Default
is r = 10. Each x-ray event reaching component name will be repeated r times with a
weight divided by r, so that in practice the number of events for the remaining part of
the simulation (down to the END), will potentially have more statistics. This is only
true if following components (and preferably component name) use random numbers.
You may use this method as many times as you wish in the same instrument, e.g. at the
monochromator and sample position. This keyword can also be used within a GROUP.
The efficiency is roughly r raised to the number of occurences in the instrument, so that
enhancing two components with the default r = 10 will produce an enhancement effect
of 100 wrt. the number of events at the end. The execution time will increase but at a
slower rate than the statistical quality, provided that the above criteria are met. If the
instrument makes use of global variables - e.g. in conjunction with a WHEN or User
Variable monitoring (see Monitor nD) - you should take care that these variables are set
properly for each SPLIT loop, which usually means that they must be reset inside the
SPLITed section and assigned/used further on.

6.5. Writing component definitions

The purpose of a McXtrace component is to model the interaction of an x-ray with
a physical component of a real beamline. Given the state of the incoming x-ray, the
component definition calculates the state of the x-ray when it leaves the component.
The calculation of the effect of the component on the x-ray is performed by a block of
embedded C code. One example of a component definition is given in section 6.5.10. All
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other component definitions can be found on the McXtrace web-page [Mcx] and are also
described in the McXtrace component manual.

A large number of functions and constants are available in order to write efficient
components. See appendix B for

• x-ray propagation functions

• geometric intersection time computations

• mathematical functions

• random number generation

• physical constants

• coordinate retrieval and operations

• file generation routines (for monitors),

• data file reading

6.5.1. The component definition header

DEFINE COMPONENT name

This marks the beginning of the definition, and defines the name of the component.

DEFINITION PARAMETERS (d1, d2, . . .)
SETTING PARAMETERS (s1, s2, . . .)

This declares the definition and setting parameters of the component. These parameters
can be accessed from all sections of the component (see below), as well as in EXTEND

sections of the instrument definition (see section 6.3).

Setting parameters are translated into C variables usually of type double in the gen-
erated simulation program, so they are usually numbers. Definition parameters are
translated into #define macro definitions, and so can have any type, including strings,
arrays, and function pointers.

However, because of the use of #define, definition parameters suffer from the usual
problems with C macro definitions. Also, it is not possible to use a general C expression
for the value of a definition parameter in the instrument definition, only constants and
variable names may be used. For this reason, setting parameters should be used whenever
possible.

Outside the INITIALIZE section of components, changing setting parameter values
only affects the current section.

There are a few cases where the use of definition parameters instead of setting pa-
rameters makes sense. If the parameter is not numeric, nor a character string (i.e. an
array, for example), a setting parameter cannot be used. Also, because of the use of
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#define, the C compiler can treat definition parameters as constants when the sim-
ulation is compiled. For example, if the array sizes of a multidetector are definition
parameters, the arrays can be statically allocated in the component DECLARE section. If
setting parameters were used, it would be necessary to allocate the arrays dynamically
using e.g. malloc().

Setting parameters may optionally be declared to be of type int, char * and string,
just as in the instrument definition (see section 6.3).

OUTPUT PARAMETERS (s1, s2, . . .)

This declares a list of C identifiers (variables, functions) that are output parameters
(i.e. global) for the component. Output parameters are used to hold values that are
computed by the component itself, rather than being passed as input. This could for
example be a count of x-rays in a detector or a constant that is precomputed to speed
up computation.

Using OUTPUT PARAMETERS is highly recommended for DECLARE and internal/global
component variables and functions in order to prevent that instances of the same com-
ponent use the same variable names. Moreover (see section 6.5.2 below), these may be
accessed from any other instrument part (e.g. using the MC_GETPAR C macro). On the
other hand, the variables from the SHARE sections should not be defined as OUTPUT
parameters.

The OUTPUT PARAMETERS section is optional.

Optional component parameters

Just as for instrument parameters, the definition and setting parameters of a compo-
nent may be given a default value. Parameters with default values are called optional
parameters, and need not be given an explicit value when the component is used in an
instrument definition. A parameter is given a default value using the syntax “param =

value”. For example

SETTING PARAMETERS (radius, height, pack= 1)

Here pack is an optional parameter and if no value is given explicitly, “1” will be used.
In contrast, if no value is given for radius or height, an error message will result.

Optional parameters can greatly increase the convenience for users of components with
many parameters that have natural default values which are seldom changed. Optional
parameters are also useful to preserve backwards compatibility with old instrument
definitions when a component is updated. New parameters can be added with default
values that correspond to the old behavior, and existing instrument definitions can be
used with the new component without changes.

Optional parameters should not be used in cases where no natural default value exists.
For example the size of a slit should not be given a default value. This would prevent
the error messages that should be given in the common case of a user forgetting to set
an important parameter.
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6.5.2. The DECLARE section

DECLARE

%{

. . . C code declarations (variables, definitions, functions). . .

. . . These are usually OUTPUT parameters to avoid name conflicts
. . .
%}

This gives C declarations of global variables, functions, etc. that are used by the com-
ponent code. This may for instance be used to declare a x-ray counter for a detector
component. This section is optional.

Note that any variables declared in a DECLARE section are global. Thus a name conflict
may occur if two instances of a component are used in the same instrument. To avoid this,
variables declared in the DECLARE section should be OUTPUT parameters of the component
because McXtrace will then rename variables to avoid conflicts. For example, a simple
detector might be defined as follows:

DEFINE COMPONENT Detector

OUTPUT PARAMETERS (counts)

DECLARE

%{

int counts;

%}

...

The idea is that the counts variable counts the number of x-rays detected. In the
instrument definition, the counts parameter may be referenced using the MC_GETPAR C
macro, as in the following example instrument fragment:

COMPONENT d1 = Detector()

...

COMPONENT d2 = Detector()

...

FINALLY

%{

printf("Detector counts: d1 = %d, d2 = %d\n",

MC_GETPAR(d1,counts), MC_GETPAR(d2,counts));

%}

This way, McXtrace takes care to transparently rename the two ’counts’ OUTPUT param-
eters so that they are distinct, and can be accessed from elsewhere in the instrument
(EXTEND, FINALLY, SAVE, ...) or from other components. Note that this particu-
lar example is obsolete rather artificial since McXtrace monitors will themselves output
their contents.

72



6.5.3. The SHARE section

SHARE

%{

. . . C code shared declarations (variables, definitions, functions). . .

. . . These should not be OUTPUT parameters . . .
%}

The SHARE section has the same role as DECLARE except that when using more than one
instance of the component, it is inserted only once in the simulation code. No occurence
of the items to be shared should be in the OUTPUT parameter list (not to have McXtrace
rename the identifiers). This is particularly useful when using many instances of the
same component (for instance CRLs) if the declarations were in the DECLARE section,
McXtrace would duplicate it for each instance (making the simulation code longer). A
typical example is to have shared variables, functions, type and structure definitions
that may be used from the component TRACE section. For an example of SHARE, see
the samples/Single crystal component. The %include "file" keyword may be used to
import a shared library. The SHARE section is optional.

6.5.4. The INITIALIZE section

INITIALIZE

%{

. . . C code initialization . . .
%}

This gives C code that will be executed once at the start of the simulation, usually
to initialize any variables declared in the DECLARE section. This section is optional.
Component setting parameters may be modified in this section, affecting the rest of the
component.

6.5.5. The TRACE section

TRACE

%{

. . . C code to compute x-ray interaction with component . . .
%}

This performs the actual computation of the interaction between the x-ray and the com-
ponent. The C code should perform the appropriate calculations and assign the resulting
new x-ray state to the state parameters. Most components will require propagation rou-
tines to reach the component entrance/area. Special macros PROP_Z0; and PROP_DL();

are provided to automate this process (see section B.1).

The C code may also execute the special macro ABSORB to indicate that the x-ray
has been absorbed in the component and the simulation of that x-ray will be aborted.
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On the other hand, if the x-ray event should be allowed be backpropagated, the special
macro ALLOW_BACKPROP; should preceed a call to the PROP_** call inside the component.
When the x-ray state is changed or detected, for instance if the component simulates

a reflecting mirror, the special macro SCATTER should be called. This does not affect
the results of the simulation in any way, but it allows the front-end programs to visu-
alize the scattering events properly, and to handle component GROUPs in an instrument
definition (see section 6.3.5). It basically increments the SCATTERED counter. The
SCATTER macro should be called with the state parameters set to the proper values for
the scattering event., so that x-ray events are displayed correctly. For an example of
SCATTER, see the optics/Mirror curved component. Lately a new keyword RESTORE has
been added, which generally

6.5.6. The SAVE section

SAVE

%{

. . . C code to execute in order to save data . . .
%}

This gives code that will be executed when the simulation ends, or is requested to save
data, for instance when receiving a USR2 signal (on Unix systems, see section 5.2), or
when triggered by the Progress bar(flag save=1) component. This might be used by
monitors and detectors in order to write results. An extension depending on the selected
output format (see table 5.3 and section 5.2) is automatically appended to file names, if
these latter do not contain extension.

In order to work properly with the common output file format used in McXtrace,
all monitor/detector components should use standard macros for writing data in the
SAVE or FINALLY section, as explained below. In the following, we use N =

∑
i p

0
i to

denote the count of detected x-ray events, p =
∑

i pi to denote the sum of the weights
of detected x-rays, and p2 =

∑
i p

2
i to denote the sum of the squares of the weights, as

explained in section 4.2.1.

As a default, all monitors using the standard macros will display the integral p of the
monitor bins, as well as the 2nd moment σ and the number of statistical events N . This
will result in a line such as:

Detector: CompName I=p CompName ERR=σ CompName N=N ”file-
name”

For 1D and 2D monitors/detectors, the data histogram store in the files is given per
bin when the signal is the x-ray intensity (most of the cases). Most monitors define
binning for an xn axis value as the sum of events falling into the [xnxn+1] range, i.e the
bins are not centered, but left aligned. Using the Monitor nD component, it is possible
to monitor other signals using the ’signal=variable name’ in the ’options’ parameter
(refer to that component documentation).
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Single detectors/monitors The results of a single detector/monitor are written using
the following macro:

DETECTOR OUT 0D(t, N, p, p2 )

Here, t is a string giving a short descriptive title for the results, e.g. “Single monitor”.

One-dimensional detectors/monitors The results of a one-dimensional detector/mon-
itor are written using the following macro:

DETECTOR OUT 1D(t, xlabel, ylabel,xvar, xmin, xmax, m,

&N [0], &p [0], &p2 [0],filename )

Here,

• t is a string giving a descriptive title (e.g. “Energy monitor”),

• xlabel is a string giving a descriptive label for the X axis in a plot (e.g. “Energy
[meV]”),

• ylabel is a string giving a descriptive label for the Y axis of a plot (e.g. “Intensity”),

• xvar is a string giving the name of the variable on the X axis (e.g. “E”),

• xmin is the lower limit for the X axis,

• xmax is the upper limit for the X axis,

• m is the number of elements in the detector arrays,

• &N [0] is a pointer to the first element in the array of N values for the detector
component (or NULL, in which case no error bars will be computed),

• &p[0] is a pointer to the first element in the array of p values for the detector
component,

• &p2 [0] is a pointer to the first element in the array of p2 values for the detector
component (or NULL, in which case no error bars will be computed),

• filename is a string giving the name of the file in which to store the data.

Two-dimensional detectors/monitors The results of a two-dimensional detector/mon-
itor are written to a file using the following macro:

DETECTOR OUT 2D(t, xlabel, ylabel, xmin, xmax, ymin, ymax, m, n,

&N [0][0], &p [0][0],&p2 [0][0],filename )

Here,

• t is a string giving a descriptive title (e.g. “PSD monitor”),
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• xlabel is a string giving a descriptive label for the X axis in a plot (e.g. “X position
[cm]”),

• ylabel is a string giving a descriptive label for the Y axis of a plot (e.g. “Y position
[cm]”),

• xmin is the lower limit for the X axis,

• xmax is the upper limit for the X axis,

• ymin is the lower limit for the Y axis,

• ymax is the upper limit for the Y axis,

• m is the number of elements in the detector arrays along the X axis,

• n is the number of elements in the detector arrays along the Y axis,

• &N[0][0] is a pointer to the first element in the array of N values for the detector
component,

• &p[0][0] is a pointer to the first element in the array of p values for the detector
component,

• &p2[0][0] is a pointer to the first element in the array of p2 values for the detector
component,

• filename is a string giving the name of the file in which to store the data.

Note that for a two-dimensional detector array, the first dimension is along the X axis
and the second dimension is along the Y axis. This means that element (ix, iy) can be
obtained as p[ix ∗ n+ iy] if p is a pointer to the first element.

Customizing detectors/monitors Users may want to have additional information than
the default one written by the DETECTOR OUT macros. A mechanism has been
implemented for monitor components to output customized meta data. The macro:

DETECTOR CUSTOM HEADER(t )

defines a string to be written during the next DETECTOR\_OUT* call, as a field custom.
This string should use the symbol %PRE which is replaced by the comment character
’#’. The argument t to the macro may be a static string, e.g. ”My own additional
information”, or the name of a character array variable containing the meta data. After
the detector/monitor file being written, the custom meta data output is unactivated.
This way, each monitor file may have its own meta data definition by repeating the
DETECTOR CUSTOM HEADER call. You may either do that inside the component
SAVE section, or within an instrument description in an EXTEND code preceeding the
monitor (e.g. following an Arm component).
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6.5.7. The FINALLY section

FINALLY

%{

. . . C code to execute at end of simulation . . .
%}

This gives code that will be executed when the simulation has ended. This might be
used to free memory and print out final results from components, e.g. the simulated
intensity in a detector. This section also triggers the SAVE section to be executed.

6.5.8. The MCDISPLAY section

MCDISPLAY

%{

. . . C code to draw a sketch of the component . . .
%}

This gives C code that draws a sketch of the component in the plots produced by
the mxdisplay front-end (see section 5.3.3). The section can contain arbitrary C code
and may refer to the parameters of the component, but usually it will consist of a
short sequence of the special commands described below that are available only in the
MCDISPLAY section. When drawing components, all distances and positions are in
meters and specified in the local coordinate system of the component.

The MCDISPLAY section is optional. If it is omitted, mxdisplay will use a default
symbol (a small circle) for drawing the component.

The magnify command This command, if present, must be the first in the section. It
takes a single argument: a string containing zero or more of the letters “x”, “y” and
“z”. It causes the drawing to be enlarged along the specified axis in case mxdisplay is
called with the --zoom option. For example:

magnify("xy");

The line command The line command takes the following form:

line(x1, y1, z1, x2, y2, z2)

It draws a line between the points (x1, y1, z1) and (x2, y2, z2).

The dashed line command The dashed line command takes the following form:

dashed line(x1, y1, z1, x2, y2, z2, n)

It draws a dashed line between the points (x1, y1, z1) and (x2, y2, z2) with n equidistant
spaces.
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The multiline command The multiline command takes the following form:

multiline(n, x1, y1, z1, ..., xn, yn, zn)

It draws a series of lines through the n points (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn). It
thus accepts a variable number of arguments depending on the value of n. This exposes
one of the nasty quirks of C since no type checking is performed by the C compiler. It
is thus very important that all arguments to multiline (except n) are valid numbers of
type double. A common mistake is to write

multiline(3, x, y, 0, ...)

which will silently produce garbage output. This must instead be written as

multiline(3, (double)x, (double)y, 0.0, ...)

The rectangle command The rectangle command takes the following form:

rectangle(plane, x, y, z, width, height )

Here plane should be either "xy", "xz", or "yz". The command draws a rectangle in
the specified plane with the center at (x, y, z) and the size width × height. Depending
on plane the width and height are defined as:

plane width height
xy x y
xz x z
yz y z

The box command The box command takes the following form:

box(x, y, z, xwidth, yheight, zlength )

The command draws a box with the center at (x, y, z) and the size xwidth × yheight ×
zlength.

The circle command The circle command takes the following form:

circle(plane, x, y, z, r)

Here plane should be either "xy", "xz", or "yz". The command draws a circle in the
specified plane with the center at (x, y, z) and the radius r.

6.5.9. The end of the component definition

END

This marks the end of the component definition.
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6.5.10. A component example: Semi-transparent mirror

Below is an example of a complete component. A simple example of the component
Semi mirror is given.

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗
3 ∗ McStas , X−ray t r a c i n g package
4 ∗ Copyright (C) 2015 , A l l r i g h t s r e s e rved
5 ∗ DTU Physics , Kgs . Lyngby , Denmark
6 ∗
7 ∗ Component : Semi miror
8 ∗
9 ∗ %I

10 ∗
11 ∗ Written by : Erik B Knudsen
12 ∗ Date :
13 ∗ Version : Revis ion : 1 .0
14 ∗ Release : McXtrace manual
15 ∗ Origin : DTU Phys ics
16 ∗
17 ∗ Simple f l a t semi−r e f l e c t i n g mirror wi th cons tant r e f l e c t i v i t y
18 ∗
19 ∗ %D
20 ∗ A p e r f e c t l y f l a t p lane mirror example , in tended as an example o f a
21 ∗ very s imple component .
22 ∗ I t a l s o i l l u s t r a t e s the concept o f MC−cho ice f o r governing s t a t s t i c s .
23 ∗
24 ∗ %P
25 ∗ Input parameters :
26 ∗ xwidth : (m) Width o f the mirror .
27 ∗ yhe i g h t : (m) Height o f the mirror .
28 ∗ r e f l e c t i v i t y : ( ) Constant s c a l a r r e f l e c t i v i t y o f mirror .
29 ∗ f r a c r e f l e c t : ( ) Fract ion o f s t a t i s t i c s f o r r e f l e c t i n g branch .
30 ∗ %E
31 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
32
33 DEFINE COMPONENT Semi mirror
34 DEFINITION PARAMETERS ( )
35 SETTING PARAMETERS ( xwidth , yheight , r e f l e c t i v i t y , f r a c r e f l e c t )
36
37 SHARE
38 %{
39 %}
40
41 INITIALIZE
42 %{
43 %}
44
45 TRACE
46 %{
47 PROP Z0 ;
48 i f ( x>−xwidth /2 .0 && x<xwidth /2 .0 && y>−yhe ight /2 .0 && y<yhe ight /2 . 0 ) {
49 double r ;
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50 r=rand01 ( ) ;
51 SCATTER;
52 i f ( r< f r a c r e f l e c t ) {
53 vz=−vz ;
54 p∗=r e f l e c t i v i t y / f r a c r e f l e c t ;
55 i n t e r n a l c o l o r =1;
56 } else {
57 i n t e r n a l c o l o r =0;
58 p∗=(1− r e f l e c t i v i t y ) /(1− f r a c r e f l e c t ) ;
59 }
60 } else {
61 RESTOREXRAY(INDEX CURRENT COMP, x , y , z , kx , ky , kz , phi , t , Ex ,Ey , Ez , p) ;
62 }
63 %}
64
65 MCDISPLAY
66 %{
67 magnify ( ”” ) ;
68 mu l t i l i n e (5 , −xwidth /2 . 0 , −yhe ight /2 . 0 , 0 . 0 ,
69 xwidth /2 . 0 , −yhe ight /2 . 0 , 0 . 0 ,
70 xwidth /2 . 0 , yhe ight /2 . 0 , 0 . 0 ,
71 −xwidth /2 . 0 , yhe ight /2 . 0 , 0 . 0 ,
72 −xwidth /2 . 0 , −yhe ight /2 . 0 , 0 . 0 ) ;
73 %}
74
75 END

Listing 6.1: Complete listing of a semi-transparent mirror component. The component
implements a Monte Carlo choice which lets the user decide how much of the
available statistics should be used for the reflected and tranmitted branches
respectively.

6.6. Extending component definitions

Suppose you are interested in one component in the McXtrace library, but you would
like to customize it a little. There are different ways to extend an existing component.

6.6.1. Extending from the instrument definition file

If you only want to add something on top of the component existing behaviour, the
simplest is to work from the instrument definition TRACE section, using the EXTEND

modifier (see section 6.4.2). You do not need to write a new component definition, but
only add a piece of code to execute.

6.6.2. Explicitly modify an existing library component

Copy the interesting component definition from the McXtrace library location (e.g.
/usr/local/mcxtrace/1.2/... or c:\mcxtrace\1.2\...) into your working directory
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next to your instrument definition file. This will cause McXtrace to pick this component
definition up before the one in the library. Next, modify the local component file until
you ae satisfied with it. If you feel that the newly modified componennt may be of use
to the McXtrace community, please do not hesitate to contact the development team
concerning the options for contributing. Rest assured that copyright remains with you.

6.6.3. Component heritage and duplication

There is a heritage mechanism to create children of existing components. These are exact
duplicates of the parent component, but one may override/extend original definitions of
any section.

The syntax for a full component child is

DEFINE COMPONENT child name COPY parent name

This single line will copy all parts of the parent into the child, except for the documen-
tation header.

As for normal component definitions, you may add other parameters, DECLARE, TRACE,
... sections. Each of them will replace or extend (be catenated to, with the COPY/EX-
TEND keywords, see example below) the corresponding parent definition. In practice,
you could copy a component and only rewrite some of it, as in the following example:

DEFINE COMPONENT child name COPY parent name

SETTING PARAMETERS (newpar1, newpar2)
INITIALIZE COPY parent name EXTEND

%{

. . . C code to be catenated to the parent name INITIALIZE . . .
%}

SAVE

%{

. . . C code to replace the parent name SAVE . . .
%}

where two additional parameters have been defined, and should be handled in the ex-
tension of the original INITIALIZE section.

On the other hand, if you do not derive a component as a whole from a parent, you
may still use specific parts from any component:

DEFINE COMPONENT name . . .
DECLARE COPY parent1
INITIALIZE COPY parent2 EXTEND

%{

. . . C code to be catenated to the parent2 INITIALIZE . . .
%}

TRACE COPY parent3
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This mechanism may lighten the component code, but a special care should be taken
in mixing bits from different sources, specially concerning variables. This may result in
difficulties to compile components.

6.7. MxDoc, the McXtrace library documentation tool

McXtrace includes a facility called MxDoc to help maintain documentation of compo-
nents and instruments. In the source code, comments may be written that follow a
particular format understood by MxDoc. The MxDoc facility will read these comments
and automatically produce output documentation in various forms. By using the source
code itself as the source of documentation, the documentation is much more likely to be
a faithful and up-to-date description of how the component/instrument actually works.

Two forms of documentation can be generated. One is the component entry dialog in
the mxgui front-end, see section 5.3.1. The other is a collection of web pages documenting
the components and instruments, handled via the mxdoc front-end (see section 5.3.5), and
the complete documentation for all available McXtrace components and instruments may
be found at the McXtrace webpage [Mcx], as well as in the McXtrace library (see 7.1).
All available McXtrace documentation is accessible from the mxgui ’Help’ menu.

Note that MxDoc-compliant comments in the source code are no substitute for a
good reference manual entry. The mathematical equations describing the physics and
algorithms of the component should still be written up carefully for inclusion in the com-
ponent manual. The MxDoc comments are useful for describing the general behaviour
of the component, the meaning and units of the input parameters, etc.

The format of the comments in the library source code

The format of the comments understood by MxDoc is mostly straight-forward, and is
designed to be easily readable both by humans and by automatic tools. MxDoc has
been written to be quite tolerant in terms of how the comments may be formatted and
broken across lines. A good way to get a feeling for the format is to study some of the
examples in the existing components and instruments. Below, a few notes are listed on
the requirements for the comment headers:

The comment syntax uses %IDENTIFICATION, %DESCRIPTION, %PARAMETERS, %EXAMPLE:,
%LINKS, and %END keywords to mark different sections of the documentation. Keywords
may be abbreviated (except for %EXAMPLE:), e.g. as %IDENT or %I.

Additionally, optional keys %VALIDATION and %BUGS may be found to list validation
status and possible bugs in the component.

• In the %IDENTIFICATION section, author: (or written by: for backwards com-
patibility with old comments) denote author; date:, version:, and origin: are
also supported. Any number of Modified by: entries may be used to give the
revision history. The author:, date:, etc. entries must all appear on a single
line of their own. Everything else in the identification section is part of a ”short
description” of the component.
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• In the %PARAMETERS section, descriptions have the form “name : [unit ] text ”
or “name : text [unit ]”. These may span multiple lines, but subsequent lines
must be indented by at least four spaces. Note that square brackets [] should be
used for units. Normal parentheses are also supported for backwards compatibility,
but nested parentheses do not work well.

• The %DESCRIPTION section contains text in free format. The text may contain
HTML tags like <IMG> (to include pictures) and <A>. . . </A> (for links to other
web pages, but see also the %LINK section). In the generated web documentation
pages, the text is set in <PRE>. . . </PRE>, so that the line breaks in the source will
be obeyed.

• The %EXAMPLE: lines in instrument headers indicate an example parameter set or
command that may be run to test the instrument. A following Detector: <name>_I=<value>

indicates what value should be obtained for a given monitor. More than one ex-
ample line may be specified in instruments.

• Any number of %LINK sections may be given; each one contains HTML code that
will be put in a list item in the link section of the description web page. This
usually consists of an <A HREF="..."> ... </A> pointer to some other source of
information.

• Optionally, an %INSTRUMENT_SITE section followed by a single word is used to sort
instruments by origin/location in the ’X-ray Site’ menu in mxgui.

• After %END, no more comment text is read by MxDoc.
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7. The component library: Abstract

This chapter presents an abstract of existing components. As a complement to this
chapter and the detailed description in the McXtrace component manual, you may use
the mxdoc -s command to obtain the on-line component documentation and refer to
the McXtrace web-page [Mcx] where all components are documented using the MxDoc
system.

7.1. A short overview of the McXtrace component library

The table in this section gives a quick overview of available McXtrace components pro-
vided with the distribution, in the MCXTRACE library. The location of this library is
detailed in section 5.1.2. All of them are believed to be reliable, and some amount
of systematic tests have been carried out. However, no absolute guarantee be given
concerning their accuracy.

The contrib directory of the library contains components that were submitted by
McXtrace users, but where responsibility has not (yet) been taken by the McXtrace core
team.

The mxdoc front-end (section 5.3.5) enables to display both the catalog of the McX-
trace library, e.g using:

mxdoc

as well as the documentation of specific components, e.g with:

mxdoc --text name
mxdoc file.comp

The first line will search for all components matching name, and display their help
section as text, where as the second example will display the help corresponding to the
file.comp component, using your BROWSER setting, or as text if unset. The --help

option will display the command help, as usual.
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McXtrace/sources Description

Source pt Point source with uniform, Gaussian or general wave-
length/energy distribution.

Source flat Flat surface source with uniform, Gaussian or general
wavelength/energy distribution.

Source div Flat surface source with general wavelength/energy
distribution and a given divergence.

Source gaussian Flat source with a Gaussian cross section and a speci-
fied divergence.

Source lab Full featured model of a laboratory X-ray source.

Table 7.1.: Source and source-related components of the McXtrace library.

McXtrace/optics Description

Arm Arm/optical bench.
Beamstop Rectangular/circular beam stop.
Filter A general absorption filter which can be any material.
Lens simple Model of a thin compound refractive lens
Lens parab Detailed model of a parabolic compound refractive lens

of any material
Mirror curved Cylindrically curved mirror with scalar reflectivity
Mirror ellioptic Elliptically curved mirror with scalar reflectivity
Mirror parabolic Parabolically curved mirror with scalar reflectivity
Multilayer elliptic General, full featured model of an elliptically curved

multilayer mirror
Slit Perfect slit, may be either rectangular or circular
Slit N Multichanneled slit, i.e. a grating

Table 7.2.: Optics components of the McXtrace library.

McXtrace/samples Description

PowderN General powder sample with N scattering vectors, us-
ing a data file. Can assume concentric shape, i.e. can
be used to model sample enviroment.

Perfect crystal Model of a prefect crystal, for instance to be used as a
monochromator

Saxs spheres Simple sample for Small Angle X-ray Scattering - hard
spheres

Single crystal Mosaic single crystal with multiple scattering vectors
using a data file.

Table 7.3.: Sample components of the McXtrace library.
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McXtrace/monitors Description

EPSD monitor A monitor measuring x-ray intensity vs. position,
but restricted to a particular energy interval.

E monitor Energy-sensitive monitor.
L monitor Wavelength-sensitive monitor.
Monitor Simple single detector/monitor.
Monitor nD General monitor that can output 0/1/2D signals (In-

tensity or signal vs. [something] and vs. [something]
...).

PSD monitor Position-sensitive monitor.
PSD monitor 4PI Spherical position-sensitive detector.
PreMonitor nD This component is a PreMonitor that is to be used

with one Monitor nD, in order to record some photon
parameter correlations.

TOFLambda monitor Time-of-flight vs. wavelength monitor.
TOF monitor Rectangular Time-of-flight monitor.

Table 7.4.: Selected Monitor components of the McXtrace library.

McXtrace/misc Description

Progress bar Displays status of a running simulation. May also trig-
ger intermediate SAVE.

Beam spy A monitor that displays mean statistics (no output
file).

Table 7.5.: Miscellaneous components of the McXtrace library.

McXtrace/data Description

Al.txt, He.txt, etc. Data files from the NIST-database (covering the ele-
ments with Z ∈ [1..92]) to be used for absorption and
refraction.

Fe bpy ES DFT.txt,
Fe bpy GS DFT.txt

Ground- and excited state atom positions of Iron tris
bipyridine for use with Molecule\_2state.

FormFactors.txt Atomic form factors for elements with Z ∈ [1..92].
Ref W B4C.txt Reflectivity of a W-B4C multilayer.
Ref W Si.txt Reflectivity of a W-Si multilayer.

Table 7.6.: Data files of the McXtrace library.
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McXtrace/examples Description

JJ SAXS.instr A model of the SAXSlab laboratory SAXS-system
which was a prototype of the one currently sold by
SAXSlab.

Pump probe Generic pump-probe experiment instrument.
NSLS2 CHX.instr Model of the CHX hard X-ray beamline at NSLS2.
MAXII 811.instr Surface diffraction and EXAFS-bealine at MAXlab
MAXII 711.instr Powder diffraction beamline at MAXlab.
ESRF ID11.instr The ESRF ID11 3DXRD beamline.
Be BM beamline.instr Design study of a bending magnet beamline using re-

fractive lenses and a slit as monochromator.
XFEL SPB.instr Model of the beamtransport system of the SPB beam-

line at XFEL.

Table 7.7.: Instrument example files of the McXtrace library. These example instruments
are accessible through the mxgui “X-ray site” menu.
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A. Random numbers in McXtrace

A.1. Transformation of random numbers

In order to perform the Monte Carlo choices, one needs to be able to pick a random
number from a given distribution. However, most random number generators only give
uniform distributions over a certain interval. We thus need to be able to transform
between probability distributions, and we here give a short explanation on how to do
this.

Assume that we pick a random number, x, from a distribution φ(x). We are now
interested in the shape of the distribution, Ψ(y), of the transformed y = f(x), assuming
f(x) is monotonous. All random numbers lying in the interval [x;x+dx] are transformed
to lie within the interval [y; y + f ′(x)dx], so the resulting distribution must be Ψ(y) =
φ(x)/f ′(x).

If the random number generator selects numbers uniformly in the interval [0; 1], we
have φ(x) = 1 (inside the interval; zero outside), and we reach

Ψ(y) =
1

f ′(x)
=

d

dy
f−1(y). (A.1)

By indefinite integration we reach∫
Ψ(y)dy = f−1(y) = x, (A.2)

which is the essential formula for random number transformation, since we in general
know Ψ(y) and like to determine the relation y = f(x). Let us illustrate with a few
examples of transformations relevant for the McXtrace components.

The circle For finding a random point within the circle of radius R, one would like to
choose the polar angle, φ, from a uniform distribution in [0; 2π], giving Ψφ = 1/(2π).
and the radius from the (normalised) distribution Ψr = 2r/R2.

For the radial part, eq. (A.2) becomes y/(2π) = x, whence φ is found simply by
multiplying a random number (x) with 2π.

For the radial part, the left side of eq. (A.2), gives
∫

Ψ(r)dr =
∫

2r/R2dr = r2/R2,
which from (A.2) should equal x. Hence we reach the wanted transformation r = R

√
x.

The sphere For finding a random point on the surface of the unit sphere, we need to
determine the two angles, (θ, φ).

Ψφ is chosen from a uniform distribution in [0; 2π], giving φ = 2πx as for the circle.
The probability distribution of θ should be Ψθ = sin(θ) (for θ ∈ [0;π]), whence by

eq. (A.2) θ = cos−1(x).
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Exponential decay In a simple 2-state model a molecule may be said to relax into
its ground state at a time which is exponetially distributed after the initial excitation
at t = 0. We thus want to pick a relaxation time from the normalised distribution
Ψ(t) = exp(−t/τ)/τ . Use of Eq. (A.2) gives x = 1 − exp(−t/τ). For convenience we
now use the random variable x1 = 1 − x (with the same distributions as x), giving the
simple expression t = −τ ln(x1).

Normal distributions The important normal distribution can not be reached as a simple
transformation of a uniform distribution. In stead, we rely on a specific algorithm for
selecting random numbers with this distribution.

A.2. Random generators

Even though there is the possibility to use the system random generator, as well as the
initial McXtrace random generator, the default algorithm is the so-called ”Mersenne
Twister”, by Makoto Matsumoto and Takuji Nishimura[MN98]. See
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for original source.

It is considered today to be by far the best random generator, which means that both
its period is extremely large 219937 − 1, and cross-correlations are negligible, i.e distri-
butions are homogeneous and independent up to 623 dimensions. It is also extremely
fast.
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B. Libraries and conversion constants

The McXtrace Library contains a number of built-in functions and conversion constants
which are useful when constructing components. These are stored in the share directory
of the MCXTRACE library.

Within these functions, the ’Run-time’ part is available for all component/instrument
descriptions. The other parts are dynamic, that is they are not pre-loaded, but only
imported once when a component requests it using the %include McXtrace keyword.
For instance, within a component C code block, (usually SHARE or DECLARE):

1 %inc lude ” read tab l e−l i b ”

will include the ’read table-lib.h’ file, and the ’read table-lib.c’ (unless the --no-runtime
option is used with mcxtrace). Similarly,

1 %inc lude ” read tab l e−l i b . h”

will only include the ’read table-lib.h’. The library embedding is done only once for
all components (like the SHARE section). For an example of implementation, see
Res monitor.

In this Appendix, we present a short list of both each of the library contents and the
run-time features.

B.1. Run-time calls and functions (mcxtrace-r)

Here we list a number of preprogrammed macros and functions which may ease the task
of writing component and instrument definitions. By convention macros are in upper
case whereas functions are in lower case.

B.1.1. Photon propagation

Propagation routines perform all necessary operations to transport x-rays from one point
to an other. Except when using the special ALLOW_BACKPROP; call prior to executing any
PROP_* propagation, the x-rays which have negative propagation lengths are removed
automatically.

• ABSORB. This macro issues an order to the overall McXtrace simulator to in-
terrupt the simulation of the current x-ray history and to start a new one.

• PROP Z0. Propagates the x-ray to the z = 0 plane, by adjusting (x, y, z), φ, and t
accordingly from knowledge of the x-ray wavevector (kx, ky, kz). If the propagation
length is negative, the x-ray is absorbed, except if a ALLOW_BACKPROP; preceeds it.
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For components that are centered along the z-axis, use the _intersect functions
to determine intersection time(s), and then a PROP_DL call.

• PROP X0, PROP Y0. These macros are analogous to PROP_Z0 except they
propagate to the x = 0 and y = 0 planes respectively.

• PROP DL(dl). Propagates the x-ray by the length dl, adjusting (x, y, z), φ, t
accordingly, from knowledge of the x-ray wavevector.

• ALLOW BACKPROP. Indicates that the next propagation routine will not
remove the x-ray, even if negative propagation lengths are found. Subsequent
propagations are not affected.

• SCATTER. This macro is used to denote a scattering event inside a component.
It should be used to indicate that a component has interacted with the x-ray (e.g.
scattered or detected). This does not affect the x-ray state (see, however, Beam-
stop), and it is mainly used by the MCDISPLAY section and the GROUP modifier.
See also the SCATTERED variable (below).

B.1.2. Coordinate and component variable retrieval

• MC GETPAR(comp, outpar). This may be used in e.g. the FINALLY section
of an instrument definition to reference the parameters of a component.

• NAME CURRENT COMP gives the name of the current component as a
string.

• POS A CURRENT COMP gives the absolute position of the current compo-
nent. A component of the vector is referred to as POS A CURRENT COMP.i
where i is x, y or z.

• ROT A CURRENT COMP and ROT R CURRENT COMP give the ori-
entation of the current component as rotation matrices (absolute orientation and
the orientation relative to the previous component, respectively). A component of
a rotation matrix is referred to as ROT A CURRENT COMP[m][n], where m and
n are 0, 1, or 2 standing for x, y and z coordinates respectively.

• POS A COMP(comp) gives the absolute position of the component with the
name comp. Note that comp is not given as a string. A component of the vector
is referred to as POS A COMP(comp).i where i is x, y or z.

• ROT A COMP(comp) and ROT R COMP(comp) give the orientation of the
component comp as rotation matrices (absolute orientation and the orientation
relative to its previous component, respectively). Note that comp is not given as a
string. A component of a rotation matrice is referred to as ROT A COMP(comp)[m][n],
where m and n are 0, 1, or 2.
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• INDEX CURRENT COMP is the number (index) of the current component
(starting from 1).

• POS A COMP INDEX(index) is the absolute position of component index.
POS A COMP INDEX (INDEX CURRENT COMP) is the same as
POS A CURRENT COMP. You may use
POS A COMP INDEX (INDEX CURRENT COMP+1)
to make, for instance, your component access the position of the next component
(this is usefull for automatic targeting). A component of the vector is referred to
as POS A COMP INDEX(index).i where i is x, y or z.

• POS R COMP INDEX works the same as above, but with relative coordinates.

• STORE XRAY(index, x, y, z, kx, ky, kz, phi, t, Ex,Ey,Ez, p) stores the current
x-ray state in the trace-history table, in local coordinate system. index is usu-
ally INDEX CURRENT COMP. This is automatically done when entering each
component of an instrument.

• RESTORE XRAY(index, x, y, z, kx, ky, kz, phi, t, Ex,Ey,Ez, p) restores the x-
ray state to the one at the input of the component index. To ignore a component
effect, use RESTORE XRAY (INDEX CURRENT COMP,
x, y, z, kx, ky, kz, phi, Ex,Ey,Ez, p) at the end of its TRACE section, or in its EX-
TEND section. These x-ray states are in the local component coordinate systems.

• SCATTERED is a variable set to 0 when entering a component, which is incre-
mented each time a SCATTER event occurs. This may be used in the EXTEND

sections to determine whether the component interacted with the current x-ray.

• extend list(n, &arr, &len, elemsize). Given an array arr with len elements each
of size elemsize, make sure that the array is big enough to hold at least n elements,
by extending arr and len if necessary. Typically used when reading a list of
numbers from a data file when the length of the file is not known in advance.

• mcset ncount(n). Sets the number of x-ray histories to simulate to n.

• mcget ncount(). Returns the number of x-ray histories to simulate (usually set
by option -n).

• mcget run num(). Returns the number of x-ray histories that have been simu-
lated until now.

B.1.3. Coordinate transformations

• coords set(x, y, z) returns a Coord structure (like POS A CURRENT COMP)
with x, y and z members.

• coords get(P, &x, &y, &z) copies the x, y and z members of the Coord structure
P into x, y, z variables.
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• coords add(a, b), coords sub(a, b), coords neg(a) enable to operate on coordi-
nates, and return the resulting Coord structure.

• rot set rotation(Rotation t, φx, φy, φz) Get transformation matrix for rotation
first φx around x axis, then φy around y, and last φz around z. t should be a
’Rotation’ ([3][3] ’double’ matrix).

• rot mul(Rotation t1, Rotation t2, Rotation t3) performs t3 = t1.t2.

• rot copy(Rotation dest, Rotation src) performs dest = src for Rotation arrays.

• rot transpose(Rotation src, Rotation dest) performs dest = srct.

• rot apply(Rotation t, Coords a) returns a Coord structure which is t.a

B.1.4. Mathematical routines

• NORM(x, y, z). Normalizes the vector (x, y, z) to have length 1.

• scalar prod(ax, ay, az, bx, by, bz). Returns the scalar product of the two vectors
(ax, ay, az) and (bx, by, bz).

• vec prod(&ax,&ay,&az, bx,by,bz, cx,cy,cz). Sets (ax, ay, az) equal to the vector
product (bx, by, bz)× (cx, cy, cz).

• rotate(&x,&y,&z,vx,vy,vz,ϕ,ax,ay,az). Set (x, y, z) to the result of rotating the
vector (vx, vy, vz) the angle ϕ (in radians) around the vector (ax, ay, az).

• normal vec(nx, ny, nz, x, y, z). Computes a unit vector (nx, ny, nz) normal to
the vector (x, y, z).∗

• solve 2nd order(*t0,*t1, A, B, C). Solves the 2nd order equation At2+Bt+C = 0
and puts the solutions in *t0 and *t1. The smallest positive solution into pointer
*t0. If t1=NULL it is ignored and the second solution is discarded.

B.1.5. Output from detectors

Details about using these functions are given in the McXtrace User Manual.

• DETECTOR OUT 0D(...). Used to output the results from a single detector.
The name of the detector is output together with the simulated intensity and
estimated statistical error. The output is produced in a format that can be read
by McXtrace front-end programs.

• DETECTOR OUT 1D(...). Used to output the results from a one-dimensional
detector. Integrated intensities error etc. is also reported as for DETECTOR OUT 0D.

• DETECTOR OUT 2D(. . . ...). Used to output the results from a two-dimentional
detector. Integrated intensities error etc. is also reported as for DETECTOR OUT 0D.
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• mcinfo simulation(FILE *f, mcformat, char *pre, char *name) is used to ap-
pend the simulation parameters into file f (see for instance Res monitor). Inter-
nal variable mcformat should be used as specified. Please contact the authors for
further information.

B.1.6. Ray-geometry intersections

• inside rectangle(x, y, xw, yh). Return 1 if −xw/2 ≤ x ≤ xw/2 AND −yh/2 ≤
y ≤ yh/2. Else return 0.

• box intersect(&l1, &l2, x, y, z, kx, ky, kz, dx, dy, dz). Calculates the (0, 1,
or 2) intersections between the x-ray path and a box of dimensions dx, dy, and
dz, centered at the origin for a x-ray with the parameters (x, y, z, kx, ky, kz). The
intersection lengths are returned in the variables l1 and l2, with l1 < l2. In the case
of less than two intersections, t1 (and possibly t2) are set to zero. The function
returns true if the x-ray intersects the box, false otherwise.

• cylinder intersect(&l1, &l2, x, y, z, kx, ky, kz, r, h). Similar to box intersect,
but using a cylinder of height h and radius r, centered at the origin.

• sphere intersect(&l1, &l2, x, y, z, kx, ky, kz, r). Similar to box intersect, but
using a sphere of radius r.

• ellipsoid intersect(&l1, &l2, x, y, z, kx, ky, kz, a,b,c,Q, ). Similar to box intersect,
but using an ellipsoid with half-axis a,b,c oriented by the rotation matrix Q. If
Q = I, a is along the x-axis, b along y and c along z

B.1.7. Random numbers

By default McXtrace uses the included Mersenne Twister[MN98] algorithm for generat-
ing pseudo random numbers.

• rand01(). Returns a random number distributed uniformly between 0 and 1.

• randnorm(). Returns a random number from a normal distribution centered
around 0 and with σ = 1. The algorithm used to sample the normal distribution
is explained in Ref. [Pre+86, ch.7].

• randpm1(). Returns a random number distributed uniformly between -1 and 1.

• randtriangle(). Returns a random number from a triangular distribution between
-1 and 1.

• randvec target circle(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz, rf ). Generates
a random vector (vx, vy, vz), of the same length as (aimx, aimy, aimz), which is
targeted at a disk centered at (aimx, aimy, aimz) with radius rf (in meters),
and perpendicular to the aim vector.. All directions that intersect the circle are
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chosen with equal probability. The solid angle of the circle as seen from the po-
sition of the x-ray is returned in dΩ. This routine was previously called rand-
vec target sphere (which still works).

• randvec target rect angular(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz,h,w,Rot)
does the same as randvec target circle but targetting at a rectangle with angular
dimensions h and w (in radians, not in degrees as other angles). The rotation
matrix Rot is the coordinate system orientation in the absolute frame, usually
ROT A CURRENT COMP.

• randvec target rect(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz,height, width,Rot)
is the same as randvec target rect angular but height and width dimensions are
given in meters. This function is useful to e.g. target at a guide entry window or
analyzer blade.

B.2. Reading a data file into a vector/matrix (Table input,
read table-lib)

The read_table-lib library provides functionalities for reading text (and binary) data
files. To use this library, add a %include "read_table-lib" in your component def-
inition DECLARE or SHARE section. Tables are structures of type t_Table (see
read_table-lib.h file for details):

1 /∗ t Tab l e s t r u c t u r e (most important members ) ∗/
2 double ∗data ; /∗ Use Tab le Index ( Table , i j ) to e x t r a c t [ i , j ]

e lement ∗/
3 long rows ; /∗ number o f rows ∗/
4 long columns ; /∗ number o f columns ∗/
5 char ∗header ; /∗ the header wi th comments ∗/
6 char ∗ f i l ename ; /∗ f i l e name or t i t l e ∗/
7 double min x ; /∗ minimum va lue o f 1 s t column/ vec t o r ∗/
8 double max x ; /∗ maximum va lue o f 1 s t column/ vec t o r ∗/

Available functions to read a single vector/matrix are:

• Table Init(&Table, rows, columns) returns an allocated Table structure. Use
rows = columns = 0 not to allocate memory and return an empty table. Calls to
Table Init are optional, since initialization is being performed by other functions
already.

• Table Read(&Table, filename, block) reads numerical block number block (0 to
catenate all) data from text file filename into Table, which is as well initialized in
the process. The block number changes when the numerical data changes its size,
or a comment is encoutered (lines starting by ’# ; % /’). If the data could not be
read, then Table.data is NULL and Table.rows = 0. You may then try to read it
using Table Read Offset Binary. Return value is the number of elements read.
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• Table Read Offset(&Table, filename, block, &offset, nrows) does the same as
Table Read except that it starts at offset offset (0 means begining of file) and
reads nrows lines (0 for all). The offset is returned as the final offset reached after
reading the nrows lines.

• Table Read Offset Binary(&Table, filename, type, block, &offset, nrows, ncolumns)
does the same as Table Read Offset, but also specifies the type of the file (may
be ”float” or ”double”), the number nrows of rows to read, each of them having
ncolumns elements. No text header should be present in the file.

• Table Rebin(&Table) rebins all Table rows with increasing, evenly spaced first
column (index 0), e.g. before using Table Value. Linear interpolation is performed
for all other columns. The number of bins for the rebinned table is determined
from the smallest first column step.

• Table Info(Table) print information about the table Table.

• Table Index(Table,m, n) reads the Table[m][n] element.

• Table Value(Table, x, n) looks for the closest x value in the first column (index
0), and extracts in this row the n-th element (starting from 0). The first column
is thus the ’x’ axis for the data.

• Table Free(&Table) free allocated memory blocks.

• Table Value2d(Table, X, Y ) Uses 2D linear interpolation on a Table, from (X,Y)
coordinates and returns the corresponding value.

Available functions to read an array of vectors/matrices in a text file are:

• Table Read Array(File, &n) read and split file into as many blocks as neces-
sary and return a t_Table array. Each block contains a single vector/matrix. This
only works for text files. The number of blocks is put into n.

• Table Free Array(&Table) free the Table array.

• Table Info Array(&Table) display information about all data blocks.

The format of text files is free. Lines starting by ’# ; % /’ characters are considered to
be comments, and stored in Table.header. Data blocks are vectors and matrices. Block
numbers are counted starting from 1, and changing when a comment is found, or the
column number changes. For instance, the file ’MCXTRACE/data/Rh.txt’ (Material
data for Rhodium) looks like:

1 #Rh (Z 45)
2 #Atomic weight : A[ r ] 102.9055
3 #Nominal dens i ty : rho 1 .2390E+01
4 # [ a ] ( barns /atom) = [ / ] ( cm\ˆ2 g\ˆ−1) 1 .70879E+02
5 # E(eV) [ / ] ( cm\ˆ2 g\ˆ−1) = f [ 2 ] ( e atom\ˆ−1) 4 .08922E+05
6 # 14 edges . Edge en e r g i e s (keV) :
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7 #
8 #
9 # K 2.32199E+01 L I 3 .41190E+00 L I I 3 .14610E+00 L I I I

3 .00380E+00
10 # M I 6.27100E−01 M I I 5 .21000E−01 M I I I 4 .96200E−01 M IV

3.11700E−01
11 # M V 3.07000E−01 N I 8.10000E−02 N I I 4 .79000E−02 N I I I

4 .79000E−02
12 # N IV 2.50000E−03 N V 2.50000E−03
13 #
14 # Re l a t i v i s t i c c o r r e c t i o n es t imate f [ r e l ] (H82 ,3/5CL) = −4.0814E−01,
15 # −2.5440E−01 e atom\ˆ−1
16 # Nuclear Thomson c o r r e c t i o n f [NT] = −1.0795E−02 e atom\ˆ−1
17 #
18 #

19 #Form Factors , Attenuation and Sca t t e r i ng Cross−s e c t i o n s
20 #Z=45, E = 0.001 − 433 keV
21 #
22 # E f [ 1 ] f [ 2 ] [mu/rho ] [ sigma/rho ]

[mu/rho ] [mu/rho ] [K] lambda
23 # Pho t o e l e c t r i c Coh+inc Total
24 # keV e atom\ˆ−1 e atom\ˆ−1 cm\ˆ2 g\ˆ−1 cm\ˆ2 g\ˆ−1

cm\ˆ2 g\ˆ−1 cm\ˆ2 g\ˆ−1 nm
25 1.069000E−02 1.89417E+00 4.8055E+00 1.8382E+05 1.1514E−04 1 .8382E+05

0 .000E+00 1.160E+02
26 1.142761E−02 2.09662E+00 5.1028E+00 1.8260E+05 1.5865E−04 1 .8260E+05

0 .000E+00 1.085E+02
27 1.221612E−02 2.32705E+00 5.4019E+00 1.8082E+05 2.1741E−04 1 .8082E+05

0 .000E+00 1.015E+02
28 1.305903E−02 2.58575E+00 5.6998E+00 1.7848E+05 2.9628E−04 1 .7848E+05

0 .000E+00 9.494E+01
29 1.396010E−02 2.87263E+00 5.9931E+00 1.7555E+05 4.0158E−04 1 .7555E+05

0 .000E+00 8.881E+01
30 1.492335E−02 3.18714E+00 6.2786E+00 1.7204E+05 5.4136E−04 1 .7204E+05

0 .000E+00 8.308E+01
31 1.595306E−02 3.52819E+00 6.5531E+00 1.6797E+05 7.2588E−04 1 .6797E+05

0 .000E+00 7.772E+01
32 1.705382E−02 3.89415E+00 6.8134E+00 1.6337E+05 9.6809E−04 1 .6337E+05

0 .000E+00 7.270E+01
33 . . .

Binary files should be of type ”float” (i.e. REAL*32) and ”double” (i.e. REAL*64),
and should not contain text header lines. These files are platform dependent (little or
big endian).

The filename is first searched into the current directory (and all user additional
locations specified using the -I option, see the ’Running McXtrace ’ chapter in the User
Manual), and if not found, in the data sub-directory of the MCXTRACE library location.
This way, you do not need to have local copies of the McXtrace Library Data files (see
table 7.6).

A usage example for this library part may be:
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1 t Table Table ; // dec l a r e a t Tab l e s t r u c t u r e
2 char f i l e [ ]= ”Rh. txt ” ; // a f i l e name
3 double x , y ;
4
5 Table Read(&Table , f i l e , 1) ; // i n i t i a l i z e and read the f i r s t numerical

b l o c k
6 Tab le In fo ( Table ) ; // d i s p l a y t a b l e in format ions
7 . . .
8 x = Table Index ( Table , 2 ,5 ) ; // read the 3rd row , 6 th column element
9 // o f the t a b l e . Indexes s t a r t a t zero in C

.
10 y = Table Value ( Table , 1 . 4 5 , 1 ) ; // look f o r va lue 1.45 in 1 s t column ( x

ax i s )
11 // and e x t r a c t 2nd column va lue o f t h a t row
12 Table Free(&Table ) ; // f r e e a l l o c a t e d memory f o r t a b l e

Additionally, if the block number (3rd) argument of Table Read is 0, all blocks will
be catenated. The Table Value function assumes that the ’x’ axis is the first column
(index 0). Other functions are used the same way with a few additional parameters, e.g.
specifying an offset for reading files, or reading binary data.

This other example for text files shows how to read many data blocks:

1 t Table ∗Table ; // dec l a r e a t Tab l e s t r u c t u r e array
2 long n ;
3 double y ;
4
5 Table = Table Read Array ( ” f i l e . dat” , &n) ; // i n i t i a l i z e and read the a l l

numerical b l o c k
6 n = Table In fo Array ( Table ) ; // d i s p l a y in format ions f o r a l l b l o c k s (

a l s o re turns n)
7
8 y = Table Index ( Table [ 0 ] , 2 ,5 ) ; // read in 1 s t b l o c k the 3rd row , 6 th

column element
9 // ONLY use Table [ i ] wi th i < n !

10 Table Free Array ( Table ) ; // f r e e a l l o c a t e d memory f o r Table

You may look into, for instance, the source files for Lens parab or Filter for other
implementation examples.

B.3. Constants for unit conversion etc.

The following predefined constants are useful for conversion between units
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Name Value Conversion from Conversion to

DEG2RAD 2π/360 Degrees Radians
RAD2DEG 360/(2π) Radians Degrees
MIN2RAD 2π/(360 · 60) Minutes of arc Radians
RAD2MIN (360 · 60)/(2π) Radians Minutes of arc

FWHM2RMS 1/
√

8 log(2) Full width half maximum Root mean square
(standard deviation)

RMS2FWHM
√

8 log(2) Root mean square (stan-
dard deviation)

Full width half maxi-
mum

MNEUTRON 1.67492 · 10−27 kg Neutron mass, mn

HBAR 1.05459 · 10−34 Js Planck constant, ~
PI 3.14159265... π
CELE 1.602176487e-19 Elementary charge (C)
M C 299792458 Speed of light in vacuum

(m/s)
NA 6.02214179e23 Avogadro’s number

(#atoms/g·mole)
RE 2.8179402894e-5 Thomson scattering

length (AA)
E2K 0.506773091264796 Wavenumber (1/AA) Energy (keV)
K2E 1.97326972808327 Energy (keV) Wavenumber (1/AA)
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C. The McXtrace terminology

This is a short explanation of phrases and terms which have a specific meaning within
McXtrace. We have tried to keep the list as short as possible running the calculated risk
that the reader may occasionally miss an explanation. In this case, you are more than
welcome to contact the McXtrace core team.

• Arm A generic McXtrace component which defines a frame of reference for other
components.

• Component One unit (e.g. optical element) in an x-ray beamline. These are
considered as Types of elements to be instantiated in an Instrument description.

• Component Instance A named Component (of a given Type) inserted in an
Instrument description.

• Definition parameter An input parameter for a component. For example the
radius of a sample component or the divergence of a collimator. Technically, a
definition parameter is translated into a literal constant, which prevents it from
being edited at runtime.

• Input parameter For a component, either a definition parameter or a setting
parameter. These parameters are supplied by the user to define the characteris-
tics of the particular instance of the component definition. For an instrument, a
parameter that can be changed at simulation run-time.

• Instrument An assembly of McXtrace components defining an x-ray beamline.

• Kernel The McXtrace language definition and the associated compiler

• Output parameter An output parameter for a component. For example the
counts in a monitor. An output parameter may be accessed from the instrument
in which the component is used using MC_GETPAR.

• Run-time C code, contained in the files mcxtrace-r.c and mcxtrace-r.h in-
cluded in the McXtrace distribution, that declare functions and variables used by
the generated simulations.

• Setting parameter Similar to a definition parameter, but with the restriction
that the type of the parameter must be declared unless it is a number. In technical
terms, a setting parameter is translated into an actual variable (as opposed to a
definition parameter) which may be dynamically updated.
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